scholarly journals Mycobacterium leprae Transcriptome During In Vivo Growth and Ex Vivo Stationary Phases

Author(s):  
Olabisi Ojo ◽  
Diana L. Williams ◽  
Linda B. Adams ◽  
Ramanuj Lahiri

Mycobacterium leprae, the causative agent of leprosy, is an obligate intracellular pathogen primarily residing within host macrophages and Schwann cells. Whole genome sequencing predicts a highly degraded genome with approximately one third of the coding capacity resulting in the loss of many catabolic pathways. Therefore, it can be assumed that M. leprae obtains many of the necessary metabolites for intracellular survival and growth from the host cells. In this study, global transcriptomic analyses were done on freshly harvested M. leprae growing in athymic mouse footpads for five months (MFP5) and compared to those held in axenic medium for 48 (ML48) and 96 (ML96) hours. Results show that all of the genes and pseudogenes were transcribed under both in vivo and in vitro conditions. 24% and 33% of gene transcript levels were significantly altered in ML48 and ML96 respectively, compared to MFP5. Approximately 45% (39/86) of lipid metabolism genes were significantly downregulated in ML96 compared to MFP5, majority of which are in the β-oxidation pathway. Cholesterol oxidase, acyl-CoA dehydrogenase, and coenzyme F420-dependent oxidoreductase, were significantly upregulated in both ML48 and ML96 compared to MFP5. 30% of cell wall and cell processes functional category genes had altered gene transcription at 96hr compared to MFP5. 40% of 57 genes associated with mycobacterial virulence showed significantly altered transcript levels with 52% significantly downregulated in ML96, including most of the Pro-Glu/Pro-Pro-Glu genes. All 111 hypothetical protein genes with unknown function were expressed. Adenosine triphosphate (ATP) synthesis in M. leprae appears to be significantly downregulated under ex vivo conditions. This is the first study comparing M. leprae global gene expression during in vivo growth and ex vivo stationery phase in axenic medium confirming that during the growth phase in the footpads of experimentally infected mice, M. leprae is metabolically active and its primary source of energy production is probably lipids.

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Elena Ufimtseva

The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccinein vitrohas demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infectedin vitrohad increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infectedin vitroor in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells bothin vivoand inex vivoculture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infectionin vitro, when no expression of the activation-related molecules was detected in these cells.


2013 ◽  
Vol 81 (3) ◽  
pp. 923-934 ◽  
Author(s):  
Moiz A. Charania ◽  
Hamed Laroui ◽  
Hongchun Liu ◽  
Emilie Viennois ◽  
Saravanan Ayyadurai ◽  
...  

ABSTRACTCD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. EnteropathogenicEscherichia coli(EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactionsin vitroandex vivoand examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected withCitrobacter rodentiumas anin vivomodel.In vivostudies indicated that CD98 overexpression, localized to the apical domain of colonic cells, increased the attachment ofC. rodentiumin mouse colons and resulted in increased expression of proinflammatory markers and decreased expression of anti-inflammatory markers. The proliferative markers Ki-67 and cyclin D1 were significantly increased in the colonic tissue ofC. rodentium-infected hCD98 Tg mice compared to that of WT mice.Ex vivostudies correlate with thein vivodata. Small interfering RNA (siRNA) studies with Caco2-BBE cells showed a decrease in adherence of EPEC to Caco2 cells in which CD98 expression was knocked down.In vitrosurface plasmon resonance (SPR) experiments showed direct binding between recombinant hCD98 and EPEC/C. rodentiumproteins. We also demonstrated that the partial extracellular loop of hCD98 was sufficient for direct binding to EPEC/C. rodentium. These findings demonstrate the importance of the extracellular loop of CD98 in the innate host defense response to intestinal infection by attaching and effacing (A/E) pathogens.


2018 ◽  
Vol 115 (11) ◽  
pp. E2556-E2565 ◽  
Author(s):  
Brigitte Raynaud-Messina ◽  
Lucie Bracq ◽  
Maeva Dupont ◽  
Shanti Souriant ◽  
Shariq M. Usmani ◽  
...  

Bone deficits are frequent in HIV-1–infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1–induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.


2003 ◽  
Vol 71 (12) ◽  
pp. 7079-7086 ◽  
Author(s):  
David J. Banks ◽  
Benfang Lei ◽  
James M. Musser

ABSTRACT The genome of the highly virulent group A Streptococcus (GAS) serotype M3 strain MGAS315 has six prophages that encode six proven or putative virulence factors. We examined prophage induction and expression of prophage-encoded virulence factors by this strain under in vitro conditions inferred to approximate in vivo conditions. Coculture of strain MGAS315 with Detroit 562 (D562) human epithelial pharyngeal cells induced the prophage encoding streptococcal pyrogenic exotoxin K (SpeK) and extracellular phospholipase A 2 (Sla) and the prophage encoding streptodornase (Sdn). Increased gene copy numbers after induction correlated with increased speK, sla, and sdn transcript levels. Although speK and sla are located contiguously in prophage Φ315.4, these genes were transcribed independently. Whereas production of immunoreactive SpeK was either absent or minimal during coculture of GAS with D562 cells, production of immunoreactive Sla increased substantially. In contrast, despite a lack of induction of the prophage encoding speA during coculture of GAS with D562 cells, the speA transcript level and production of immunoreactive streptococcal pyrogenic exotoxin A (SpeA) increased. Exposure of strain MGAS315 to hydrogen peroxide, an oxidative stressor, induced the prophage encoding mitogenic factor 4 (MF4), and there was a concomitant increase in the mf4 transcript. All prophages of strain MGAS315 that encode virulence factors were induced during culture with mitomycin C, a DNA-damaging agent. However, the virulence factor gene transcript levels and production of the encoded proteins decreased after mitomycin C treatment. Taken together, the results indicate that a complex relationship exists among environmental culture conditions, prophage induction, and production of prophage-encoded virulence factors.


2021 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Ranjeet Kumar ◽  
Afsal Kolloli ◽  
Selvakumar Subbian

The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) causes Coronavirus disease-2019 (COVID-19), which is an ongoing pandemic that has significantly affected the health, economy, and socio-economic status of individuals worldwide. Laboratory research using in vitro, ex vivo and in vivo models has been accelerated to understand the pathogenesis of SARS-CoV-2 infection. However, such experimental research involving SARS-CoV-2 is restricted to biocontainment/safety level-3 (BSL-3) settings, due to the high pathogenicity of this virus. Since many of the downstream analyses of SARS-CoV-2-infected biological samples need to be conducted in a non-BSL3 setting, it is important to ensure that the samples are fully decontaminated and safe for subsequent analysis. Here, we report the effectiveness of standard procedures used to fix cells and tissues for pathological analysis, including 2% or 4% paraformaldehyde, 50%–70% ethanol, 10% neutral buffered formalin and ultrafiltration using membranes with a molecular weight cut-off (MWCO) ranging from 3 to 30 kDa, for inactivating or eliminating SARS-CoV-2. We validated these methods in experimental laboratory samples, such as viral inoculum in cell culture media, SARS-CoV-2 infected host cells and animal tissue lysates. We found that 15 minutes’ treatment of viral inoculum (105 plaque-forming units; PFU) or SARS-CoV-2 infected cells with paraformaldehyde or 70% ethanol resulted in complete inactivation of the virus. The treatment of infected hamster lung tissues with 10% neutral buffered formalin also fully inactivated the virus. However, only 3 kDa ultracentrifuge filter was effective in eliminating the virus to an undetectable limit in the filtrate. Our validated methods are useful for decontaminating biological samples to reduce infection risk and safe handling in BSL2 facilities.


2021 ◽  
Author(s):  
Min Chen ◽  
Jillian Rosenberg ◽  
Xiaolei Cai ◽  
Andy Chao Hsuan Lee ◽  
Jiuyun Shi ◽  
...  

SummarySARS-CoV-2 enters host cells through its viral spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells. Here we show functionalized nanoparticles, termed “Nanotraps”, completely inhibited SARS-CoV-2 infection by blocking the interaction between the spike protein of SARS-CoV-2 and the ACE2 of host cells. The liposomal-based Nanotrap surfaces were functionalized with either recombinant ACE2 proteins or anti-SARS-CoV-2 neutralizing antibodies and phagocytosis-specific phosphatidylserines. The Nanotraps effectively captured SARS-CoV-2 and completely blocked SARS-CoV-2 infection to ACE2-expressing human cell lines and primary lung cells; the phosphatidylserine triggered subsequent phagocytosis of the virus-bound, biodegradable Nanotraps by macrophages, leading to the clearance of pseudotyped and authentic virus in vitro. Furthermore, the Nanotraps demonstrated excellent biosafety profile in vitro and in vivo. Finally, the Nanotraps inhibited pseudotyped SARS-CoV-2 infection in live human lungs in an ex vivo lung perfusion system. In summary, Nanotraps represent a new nanomedicine for the inhibition of SARS-CoV-2 infection.HighlightsNanotraps block interaction between SARS-CoV-2 spike protein and host ACE2 receptorsNanotraps trigger macrophages to engulf and clear virus without becoming infectedNanotraps showed excellent biosafety profiles in vitro and in vivoNanotraps blocked infection to living human lungs in ex vivo lung perfusion systemProgress and PotentialTo address the global challenge of creating treatments for SARS-CoV-2 infection, we devised a nanomedicine termed “Nanotraps” that can completely capture and eliminate the SARS-CoV-2 virus. The Nanotraps integrate protein engineering, immunology, and nanotechnology and are effective, biocompatible, safe, stable, feasible for mass production. The Nanotraps have the potential to be formulated into a nasal spray or inhaler for easy administration and direct delivery to the respiratory system, or as an oral or ocular liquid, or subcutaneous, intramuscular or intravenous injection to target different sites of SARS-CoV-2 exposure, thus offering flexibility in administration and treatment. More broadly, the highly versatile Nanotrap platform could be further developed into new vaccines and therapeutics against a broad range of diseases in infection, autoimmunity and cancer, by incorporating with different small molecule drugs, RNA, DNA, peptides, recombinant proteins, and antibodies.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


1979 ◽  
Vol 41 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Marcia R Stelzer ◽  
Thomas S Burns ◽  
Robert N Saunders

SummaryThe relationship between the effects of suloctidil in vivo as an antiplatelet agent and in vitro as a modifier of platelet serotonin (5-HT) parameters was investigated. Suloctidil was found to be effective in reducing platelet aggregates formation in the retired breeder rat as determined using the platelet aggregate ratio method (PAR) with an ED50 of 16.1 mg/kg 24 hours post administration. In contrast to the hypothesis that 5-HT depletion is involved in the anti-aggregatory mechanism of suloctidil, no correlation was found between platelet 5- HT content and this antiplatelet activity. Reduction of platelet 5-HT content required multiple injections of high doses (100 mg/kg/day) of suloctidil. Suloctidil administration for 8 days at 100 mg/kg/day, which lowered platelet 5-HT content by 50%, resulted in no permanent effect on ex vivo platelet 5-HT uptake or thrombin-induced release, nor alteration in the plasma 5-HT level. However, these platelets exhibited a short-lived, significant increase in percent leakage of 5-HT after 30 minutes of incubation. Therefore, suloctidil treatment at high doses may with time result in platelet 5-HT depletion, however this effect is probably not related to the primary anti-aggregatory activity of the drug.


Sign in / Sign up

Export Citation Format

Share Document