scholarly journals Future Prospects of Direct Air Capture Technologies: Insights From an Expert Elicitation Survey

2021 ◽  
Vol 3 ◽  
Author(s):  
Soheil Shayegh ◽  
Valentina Bosetti ◽  
Massimo Tavoni

Direct air capture (DAC) technologies are promising but speculative. Their prospect as an affordable negative emissions option that can be deployed in large scale is particularly uncertain. Here, we report the results of an expert elicitation about the evolution of techno-economic factors characterizing DAC over time and across climate scenarios. This is the first study reporting technical experts' judgments on future costs under different scenarios, for two time periods, for two policy options, and for two different DAC technologies. Experts project CO2 removal costs to decline significantly over time but to remain expensive (median by mid-century: around 200 USD/tCO2). Nonetheless, the role of direct air capture in a 2°C policy scenario is expected to be significant (by 2050: 1.7 [0.2, 5.9] GtCO2)1. Projections align with scenarios from integrated assessment model (IAM) studies. Agreement across experts regarding which type of DAC technology might prevail is low. Energy usage and policy support are considered the most critical factors driving these technologies' future growth.

2021 ◽  
Vol 3 ◽  
Author(s):  
Shreekar Pradhan ◽  
William M. Shobe ◽  
Jay Fuhrman ◽  
Haewon McJeon ◽  
Matthew Binsted ◽  
...  

We examine the effects of negative emission technologies availability on fossil fuel-based electricity generating assets under deep decarbonization trajectories. Our study focuses on potential premature retirements (stranding) and committed emissions of existing power plants globally and the effects of deploying direct air carbon capture and biomass-based carbon capture and sequestration technologies. We use the Global Change Analysis Model (GCAM), an integrated assessment model, to simulate the global supply of electricity under a climate mitigation scenario that limits global warming to 1.5–2°C temperature increase over the century. Our results show that the availability of direct air capture (DAC) technologies reduces the stranding of existing coal and gas based conventional power plants and delays any stranding further into the future. DAC deployment under the climate mitigation goal of limiting the end-of-century warming to 1.5–2°C would reduce the stranding of power generation from 250 to 350 GW peaking during 2035-2040 to 130-150 GW in years 2050-2060. With the availability of direct air capture and carbon storage technologies, the carbon budget to meet the climate goal of limiting end-of-century warming to 1.5–2°C would require abating 28–33% of 564 Gt CO2 -the total committed CO2 emissions from the existing power plants vs. a 46–57% reduction in the scenario without direct air capture and carbon storage technologies.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3443 ◽  
Author(s):  
Peter Viebahn ◽  
Alexander Scholz ◽  
Ole Zelt

A significant reduction in greenhouse gas emissions will be necessary in the coming decades to enable the global community to avoid the most dangerous consequences of man-made global warming. This fact is reflected in Germany’s 7th Federal Energy Research Program (EFP), which was adopted in 2018. Direct Air Capture (DAC) technologies used to absorb carbon dioxide (CO2) from the atmosphere comprise one way to achieve these reductions in greenhouse gases. DAC has been identified as a technology (group) for which there are still major technology gaps. The intention of this article is to explore the potential role of DAC for the EFP by using a multi-dimensional analysis showing the technology’s possible contributions to the German government’s energy and climate policy goals and to German industry’s global reputation in the field of modern energy technologies, as well as the possibilities of integrating DAC into the existing energy system. The results show that the future role of DAC is affected by a variety of uncertainty factors. The technology is still in an early stage of development and has yet to prove its large-scale technical feasibility, as well as its economic viability. The results of the multi-dimensional evaluation, as well as the need for further technological development, integrated assessment, and systems-level analyses, justify the inclusion of DAC technology in national energy research programs like the EFP.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Camilla C. N. de Oliveira ◽  
Gerd Angelkorte ◽  
Pedro R. R. Rochedo ◽  
Alexandre Szklo

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giulia Realmonte ◽  
Laurent Drouet ◽  
Ajay Gambhir ◽  
James Glynn ◽  
Adam Hawkes ◽  
...  

2017 ◽  
Vol 144 (2) ◽  
pp. 181-193 ◽  
Author(s):  
Adriana Marcucci ◽  
Socrates Kypreos ◽  
Evangelos Panos

2020 ◽  
Author(s):  
Jonathan Doelman ◽  
Tom Kram ◽  
Benjamin Bodirsky ◽  
Isabelle Weindle ◽  
Elke Stehfest

<p>The human population has substantially grown and become wealthier over the last decades. These developments have led to major increases in the use of key natural resources such as food, energy and water causing increased pressure on the environment throughout the world. As these trends are projected to continue into the foreseeable future, a crucial question is how the provision of resources as well as the quality of the environment can be managed sustainably.</p><p>Environmental quality and resource provision are intricately linked. For example, food production depends on availability of water, land suitable for agriculture, and favourable climatic circumstances. In turn, food production causes climate change due to greenhouse gas emissions, and affects biodiversity through conversion of natural vegetation to agriculture and through the effects of excessive fertilizer and use of pesticides. There are many examples of the complex interlinkages between different production systems and environmental issues. To handle this complexity the nexus concept has been introduced which recognizes that different sectors are inherently interconnected and must be investigated in an integrated, holistic manner.</p><p>Until now, the nexus literature predominantly exists of local studies or qualitative descriptions. This study present the first qualitative, multi-model nexus study at the global scale, based on scenarios simultaneously developed with the MAgPIE land use model and the IMAGE integrated assessment model. The goal is to quantify synergies and trade-offs between different sectors of the water-land-energy-food-climate nexus in the context of sustainable development goals (SDGs). Each scenario is designed to substantially improve one of the nexus sectors water, land, energy, food or climate. A number of indicators that capture important aspects of both the nexus sectors and related SDGs is selected to assess whether these scenarios provide synergies or trade-offs with other nexus sectors, and to quantify the effects. Additionally a scenario is developed that aims to optimize policy action across nexus sectors providing an example of a holistic approach that achieves multiple sustainable development goals.</p><p>The results of this study highlight many synergies and trade-offs. For example, an important trade-off exists between climate change policy and food security targets: large-scale implementation of bio-energy and afforestation to achieve stringent climate targets negatively impacts food security. An interesting synergy exists between the food, water and climate sectors: promoting healthy diets reduces water use, improves water quality and increases the uptake of carbon by forests.</p>


Author(s):  
David G. Madden ◽  
Hayley S. Scott ◽  
Amrit Kumar ◽  
Kai-Jie Chen ◽  
Rana Sanii ◽  
...  

Sequestration of CO 2 , either from gas mixtures or directly from air (direct air capture), is a technological goal important to large-scale industrial processes such as gas purification and the mitigation of carbon emissions. Previously, we investigated five porous materials, three porous metal–organic materials (MOMs), a benchmark inorganic material, Zeolite 13X and a chemisorbent, TEPA-SBA-15 , for their ability to adsorb CO 2 directly from air and from simulated flue-gas. In this contribution, a further 10 physisorbent materials that exhibit strong interactions with CO 2 have been evaluated by temperature-programmed desorption for their potential utility in carbon capture applications: four hybrid ultramicroporous materials, SIFSIX-3-Cu , DICRO-3-Ni-i , SIFSIX-2-Cu-i and MOOFOUR-1-Ni ; five microporous MOMs, DMOF-1 , ZIF-8 , MIL-101 , UiO-66 and UiO-66-NH 2 ; an ultramicroporous MOM, Ni-4-PyC . The performance of these MOMs was found to be negatively impacted by moisture. Overall, we demonstrate that the incorporation of strong electrostatics from inorganic moieties combined with ultramicropores offers improved CO 2 capture performance from even moist gas mixtures but not enough to compete with chemisorbents. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’.


2020 ◽  
Vol 163 (3) ◽  
pp. 1659-1673 ◽  
Author(s):  
Junichi Tsutsui ◽  
Hiromi Yamamoto ◽  
Shogo Sakamoto ◽  
Masahiro Sugiyama

AbstractThe role of advanced end-use technologies has been investigated in multiple series of scenarios using an integrated assessment model BET-GLUE, which comprises an energy-economic module (BET) and a bioenergy-land-use module (GLUE). The scenarios consider different technology assumptions on the availability of bioenergy with carbon capture and storage (BECCS) and end-use efficiencies featuring electrification under a wide range of carbon price trajectories, which start at 1–690 USD/tCO2 in 2030, increase at 4.5%/year, and level off in 2100. This scenario design allows close examination of energy, economic, and environmental implications of different levels of policy stringency and carbon budgets. While improving end-use efficiencies consistently decrease policy costs for a wide range of carbon budgets, the value of BECCS availability in terms of cost reduction is crucial only in a limited range toward lower budgets. Constraints on BECCS, including those indirectly imposed by the limited bioenergy supply, also tend to narrow the lower range of attainable budget levels, indicating technological and economic challenges, although they may have an impact on reducing the total budget including land-use emissions. Overall, the advanced end-use efficiency has a significant effect on the required level of policy stringency for a given climate goal, so that it can compensate for the biomass constraints.


Author(s):  
Thomas Farole

This chapter provides a global, historical overview of the role of special economic zones (SEZs) in supporting industrialization, showing that approaches, experiences, and results vary widely across countries and over time, and identifying a number of key lessons on what differentiates successful from unsuccessful SEZ programmes. Amongst these lessons, the chapter highlights the importance of political support, location decisions, aligning the incentives of key stakeholders, strategic flexibility, and local economy integration over time. Perhaps most importantly, it argues that SEZs which successfully supported industrialization have aligned their SEZ offering with comparative advantage and have used the flexibility of the SEZ instrument in a targeted way to overcome critical constraints to large-scale private investment.


Sign in / Sign up

Export Citation Format

Share Document