scholarly journals The Potential Role of Direct Air Capture in the German Energy Research Program—Results of a Multi-Dimensional Analysis

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3443 ◽  
Author(s):  
Peter Viebahn ◽  
Alexander Scholz ◽  
Ole Zelt

A significant reduction in greenhouse gas emissions will be necessary in the coming decades to enable the global community to avoid the most dangerous consequences of man-made global warming. This fact is reflected in Germany’s 7th Federal Energy Research Program (EFP), which was adopted in 2018. Direct Air Capture (DAC) technologies used to absorb carbon dioxide (CO2) from the atmosphere comprise one way to achieve these reductions in greenhouse gases. DAC has been identified as a technology (group) for which there are still major technology gaps. The intention of this article is to explore the potential role of DAC for the EFP by using a multi-dimensional analysis showing the technology’s possible contributions to the German government’s energy and climate policy goals and to German industry’s global reputation in the field of modern energy technologies, as well as the possibilities of integrating DAC into the existing energy system. The results show that the future role of DAC is affected by a variety of uncertainty factors. The technology is still in an early stage of development and has yet to prove its large-scale technical feasibility, as well as its economic viability. The results of the multi-dimensional evaluation, as well as the need for further technological development, integrated assessment, and systems-level analyses, justify the inclusion of DAC technology in national energy research programs like the EFP.

2021 ◽  
Vol 3 ◽  
Author(s):  
Soheil Shayegh ◽  
Valentina Bosetti ◽  
Massimo Tavoni

Direct air capture (DAC) technologies are promising but speculative. Their prospect as an affordable negative emissions option that can be deployed in large scale is particularly uncertain. Here, we report the results of an expert elicitation about the evolution of techno-economic factors characterizing DAC over time and across climate scenarios. This is the first study reporting technical experts' judgments on future costs under different scenarios, for two time periods, for two policy options, and for two different DAC technologies. Experts project CO2 removal costs to decline significantly over time but to remain expensive (median by mid-century: around 200 USD/tCO2). Nonetheless, the role of direct air capture in a 2°C policy scenario is expected to be significant (by 2050: 1.7 [0.2, 5.9] GtCO2)1. Projections align with scenarios from integrated assessment model (IAM) studies. Agreement across experts regarding which type of DAC technology might prevail is low. Energy usage and policy support are considered the most critical factors driving these technologies' future growth.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giulia Realmonte ◽  
Laurent Drouet ◽  
Ajay Gambhir ◽  
James Glynn ◽  
Adam Hawkes ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiang Chen ◽  
Hongyu Li ◽  
Wenda Xu ◽  
Xiaozhong Guo

Abstract Background Pancreatic cancer (PC) is a devastating disease that has a poor prognosis and a total 5-year survival rate of around 5%. The poor prognosis of PC is due in part to a lack of suitable biomarkers that can allow early diagnosis. The lysophospholipase autotaxin (ATX) and its product lysophosphatidic acid (LPA) play an essential role in disease progression in PC patients and are associated with increased morbidity in several types of cancer. In this study, we evaluated both the potential role of serum LPA and ATX as diagnostic markers in PC and their prognostic value for PC either alone or in combination with CA19-9. Methods ATX, LPA and CA19-9 levels were evaluated using ELISA of serum obtained from PC patients (n = 114) healthy volunteers (HVs: n = 120) and patients with benign pancreatic diseases (BPDs: n = 94). Results Serum levels of ATX, LPA and CA19-9 in PC patients were substantially higher than that for BPD patients or HVs (p < 0.001). The sensitivity of LPA in early phase PC was 91.74% and the specificity of ATX was 80%. The levels of ATX, LPA and CA19-9 were all substantially higher for early stage PC patients compared to levels in serum from BPD patients and HVs. The diagnostic efficacy of CA19-9 for PC was significantly enhanced by the addition of ATX and LPA (p = 0.0012). Conclusion Measurement of LPA and ATX levels together with CA19-9 levels can be used for early detection of PC and diagnosis of PC in general.


2017 ◽  
Vol 144 (2) ◽  
pp. 181-193 ◽  
Author(s):  
Adriana Marcucci ◽  
Socrates Kypreos ◽  
Evangelos Panos

Author(s):  
David G. Madden ◽  
Hayley S. Scott ◽  
Amrit Kumar ◽  
Kai-Jie Chen ◽  
Rana Sanii ◽  
...  

Sequestration of CO 2 , either from gas mixtures or directly from air (direct air capture), is a technological goal important to large-scale industrial processes such as gas purification and the mitigation of carbon emissions. Previously, we investigated five porous materials, three porous metal–organic materials (MOMs), a benchmark inorganic material, Zeolite 13X and a chemisorbent, TEPA-SBA-15 , for their ability to adsorb CO 2 directly from air and from simulated flue-gas. In this contribution, a further 10 physisorbent materials that exhibit strong interactions with CO 2 have been evaluated by temperature-programmed desorption for their potential utility in carbon capture applications: four hybrid ultramicroporous materials, SIFSIX-3-Cu , DICRO-3-Ni-i , SIFSIX-2-Cu-i and MOOFOUR-1-Ni ; five microporous MOMs, DMOF-1 , ZIF-8 , MIL-101 , UiO-66 and UiO-66-NH 2 ; an ultramicroporous MOM, Ni-4-PyC . The performance of these MOMs was found to be negatively impacted by moisture. Overall, we demonstrate that the incorporation of strong electrostatics from inorganic moieties combined with ultramicropores offers improved CO 2 capture performance from even moist gas mixtures but not enough to compete with chemisorbents. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’.


2015 ◽  
Vol 28 (8) ◽  
pp. 847-855 ◽  
Author(s):  
Chao Wang ◽  
Haixiang Yu ◽  
Zhongming Zhang ◽  
Liangliang Yu ◽  
Xiaoshu Xu ◽  
...  

Phytosulfokine (PSK) is a tyrosine-sulfated peptide that is widely distributed in plants, participating in cell proliferation, differentiation, and innate immunity. The potential role of PSK in nodulation in legumes has not been reported. In this work, five PSK precursor genes were identified in Lotus japonicas, designated as LjPSK1 to LjPSK5. Three of them (LjPSK1, LjPSK4, and LjPSK5) were found to be expressed in nitrogen-fixing root nodules. LjPSK1 and LjPSK4 were not induced at the early stage of nodulation. Interestingly, while the expression of LjPSK4 was also found in spontaneous nodules without rhizobial colonization, LjPSK1 was not induced in these pseudo nodules. Promoter-β-glucuronidase analysis revealed that LjPSK1 was highly expressed in enlarged symbiotic cells of nodules. Exogenous addition of 1 μM synthetic PSK peptide resulted in increased nodule numbers per plant. Consistently, the number of mature nodules but not the events of rhizobial infection and nodule initiation was increased by overexpressing LjPSK1 in transgenic hairy roots, in which the expression of jasmonate-responsive genes was found to be repressed. These results suggest that PSK is a new peptide signal that regulates nodulation in legumes, probably through cross-talking with other phytohormones.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yang ◽  
Guoquan Yan ◽  
Siyuan Kong ◽  
Mengxi Wu ◽  
Pengyuan Yang ◽  
...  

AbstractLarge-scale profiling of intact glycopeptides is critical but challenging in glycoproteomics. Data independent acquisition (DIA) is an emerging technology with deep proteome coverage and accurate quantitative capability in proteomics studies, but is still in the early stage of development in the field of glycoproteomics. We propose GproDIA, a framework for the proteome-wide characterization of intact glycopeptides from DIA data with comprehensive statistical control by a 2-dimentional false discovery rate approach and a glycoform inference algorithm, enabling accurate identification of intact glycopeptides using wide isolation windows. We further utilize a semi-empirical spectrum prediction strategy to expand the coverage of spectral libraries of glycopeptides. We benchmark our method for N-glycopeptide profiling on DIA data of yeast and human serum samples, demonstrating that DIA with GproDIA outperforms the data-dependent acquisition-based methods for glycoproteomics in terms of capacity and data completeness of identification, as well as accuracy and precision of quantification. We expect that this work can provide a powerful tool for glycoproteomic studies.


2013 ◽  
Vol 59 (1) ◽  
pp. 25-50 ◽  
Author(s):  
A.V. Alessenko

The review discusses the functional role of sphingolipids in the pathogenesis of Alzheimer's disease. Certain evidence exist that the imbalance of sphingolipids such as sphingomyelin, ceramide, sphingosine, sphingosine-1-phosphate and galactosylceramide in the brain of animals and humans, in the cerebrospinal fluid and blood plasma of patients with Alzheimer's disease play a crucial role in neuronal function by regulating growth, differentiation and cell death in CNS. Activation of sphingomyelinase, which leads to the accumulation of the proapoptotic agent, ceramide, can be considered as a new mechanism for AD and may be a prerequisite for the treatment of this disease by using drugs that inhibit sphingomyelinase activity. The role of sphingolipids as biomarkers for the diagnosis of the early stage of Alzheimer's disease and monitoring the effectiveness of treatment with new drugs is discussed.


Sign in / Sign up

Export Citation Format

Share Document