scholarly journals Eye Movement and Pupil Measures: A Review

2022 ◽  
Vol 3 ◽  
Author(s):  
Bhanuka Mahanama ◽  
Yasith Jayawardana ◽  
Sundararaman Rengarajan ◽  
Gavindya Jayawardena ◽  
Leanne Chukoskie ◽  
...  

Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eye-tracking research directions.

2007 ◽  
Vol 19 (3) ◽  
pp. 420-432 ◽  
Author(s):  
Anthony T. Herdman ◽  
Jennifer D. Ryan

Human and nonhuman animal research has outlined the neural regions that support saccadic eye movements. The aim of the current work was to outline the sequence by which distinct neural regions come on-line to support goal-directed saccade execution and error-related feedback. To achieve this, we obtained behavioral responses via eye movement recordings and neural responses via magnetoencephalography (MEG), concurrently, while participants performed an antisaccade task. Neural responses were examined with respect to the onset of the saccadic eye movements. Frontal eye field and visual cortex activity distinguished subsequently successful goal-directed saccades from (correct and erroneous) reflexive saccades prior to the deployment of the eye movement. Activity in the same neural regions following the saccadic movement distinguished correct from incorrect saccadic responses. Error-related activity in the frontal eye fields preceded that from visual regions, suggesting a potential feedback network that may drive corrective eye movements. This work provides the first empirical demonstration of simultaneous remote eyetracking and MEG recording. The coupling of behavioral and neuroimaging technologies, used here to characterize dynamic brain networks underlying saccade execution and error-related feedback, demonstrates a novel within-paradigm converging evidence approach by which to outline the neural underpinnings of cognition.


2019 ◽  
Vol 24 (4) ◽  
pp. 297-311
Author(s):  
José David Moreno ◽  
José A. León ◽  
Lorena A. M. Arnal ◽  
Juan Botella

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young ( Mage = 21 years) and old ( Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.


2020 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Ramtin Zargari Marandi ◽  
Camilla Ann Fjelsted ◽  
Iris Hrustanovic ◽  
Rikke Dan Olesen ◽  
Parisa Gazerani

The affective dimension of pain contributes to pain perception. Cognitive load may influence pain-related feelings. Eye tracking has proven useful for detecting cognitive load effects objectively by using relevant eye movement characteristics. In this study, we investigated whether eye movement characteristics differ in response to pain-related feelings in the presence of low and high cognitive loads. A set of validated, control, and pain-related sounds were applied to provoke pain-related feelings. Twelve healthy young participants (six females) performed a cognitive task at two load levels, once with the control and once with pain-related sounds in a randomized order. During the tasks, eye movements and task performance were recorded. Afterwards, the participants were asked to fill out questionnaires on their pain perception in response to the applied cognitive loads. Our findings indicate that an increased cognitive load was associated with a decreased saccade peak velocity, saccade frequency, and fixation frequency, as well as an increased fixation duration and pupil dilation range. Among the oculometrics, pain-related feelings were reflected only in the pupillary responses to a low cognitive load. The performance and perceived cognitive load decreased and increased, respectively, with the task load level and were not influenced by the pain-related sounds. Pain-related feelings were lower when performing the task compared with when no task was being performed in an independent group of participants. This might be due to the cognitive engagement during the task. This study demonstrated that cognitive processing could moderate the feelings associated with pain perception.


2009 ◽  
Vol 101 (2) ◽  
pp. 934-947 ◽  
Author(s):  
Masafumi Ohki ◽  
Hiromasa Kitazawa ◽  
Takahito Hiramatsu ◽  
Kimitake Kaga ◽  
Taiko Kitamura ◽  
...  

The anatomical connection between the frontal eye field and the cerebellar hemispheric lobule VII (H-VII) suggests a potential role of the hemisphere in voluntary eye movement control. To reveal the involvement of the hemisphere in smooth pursuit and saccade control, we made a unilateral lesion around H-VII and examined its effects in three Macaca fuscata that were trained to pursue visually a small target. To the step (3°)-ramp (5–20°/s) target motion, the monkeys usually showed an initial pursuit eye movement at a latency of 80–140 ms and a small catch-up saccade at 140–220 ms that was followed by a postsaccadic pursuit eye movement that roughly matched the ramp target velocity. After unilateral cerebellar hemispheric lesioning, the initial pursuit eye movements were impaired, and the velocities of the postsaccadic pursuit eye movements decreased. The onsets of 5° visually guided saccades to the stationary target were delayed, and their amplitudes showed a tendency of increased trial-to-trial variability but never became hypo- or hypermetric. Similar tendencies were observed in the onsets and amplitudes of catch-up saccades. The adaptation of open-loop smooth pursuit velocity, tested by a step increase in target velocity for a brief period, was impaired. These lesion effects were recognized in all directions, particularly in the ipsiversive direction. A recovery was observed at 4 wk postlesion for some of these lesion effects. These results suggest that the cerebellar hemispheric region around lobule VII is involved in the control of smooth pursuit and saccadic eye movements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Talora L. Martin ◽  
Jordan Murray ◽  
Kiran Garg ◽  
Charles Gallagher ◽  
Aasef G. Shaikh ◽  
...  

AbstractWe evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.


1980 ◽  
Vol 50 (2) ◽  
pp. 631-636
Author(s):  
Evans Mandes

Post-exposural eye movements were studied in 32 adults and 24 7-yr.-old children. Stimuli were binary figures exposed tachistoscopically in both visual fields simultaneously. The data showed significant correlations between direction of eye movement and locus of recognition for both children and adults. No significant differences were found in frequencies of eye movements of children and adults. The data are interpreted in terms of the facilitative effects of post-exposural eye movements upon perception for both groups.


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


Sign in / Sign up

Export Citation Format

Share Document