scholarly journals Acute Myocardial Infarction Detection Using Deep Learning-Enabled Electrocardiograms

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiehui Chen ◽  
Wenqin Guo ◽  
Lingyue Zhao ◽  
Weichao Huang ◽  
Lili Wang ◽  
...  

Background: Acute myocardial infarction (AMI) is associated with a poor prognosis. Therefore, accurate diagnosis and early intervention of the culprit lesion are of extreme importance. Therefore, we developed a neural network algorithm in this study to automatically diagnose AMI from 12-lead electrocardiograms (ECGs).Methods: We used the open-source PTB-XL database as the training and validation sets, with a 7:3 sample size ratio. Twenty-One thousand, eight hundred thirty-seven clinical 12-lead ECGs from the PTB-XL dataset were available for training and validation (15,285 were used in the training set and 6,552 in the validation set). Additionally, we randomly selected 205 ECGs from a dataset built by Chapman University, CA, USA and Shaoxing People's Hospital, China, as the testing set. We used a residual network for training and validation. The model performance was experimentally verified in terms of area under the curve (AUC), precision, sensitivity, specificity, and F1 score.Results: The AUC of the training, validation, and testing sets were 0.964 [95% confidence interval (CI): 0.961–0.966], 0.944 (95% CI: 0.939–0.949), and 0.977 (95% CI: 0.961–0.991), respectively. The precision, sensitivity, specificity, and F1 score of the deep learning model for AMI diagnosis from ECGs were 0.827, 0.824, 0.950, and 0.825, respectively, in the training set, 0.789, 0.818, 0.913, and 0.803, respectively, in the validation set, and 0.830, 0.951, 0.951, and 0.886, respectively, in the testing set. The AUC for automatic AMI location diagnosis of LMI, IMI, ASMI, AMI, ALMI were 0.969 (95% CI: 0.959–0.979), 0.973 (95% CI: 0.962–0.978), 0.987 (95% CI: 0.963–0.989), 0.961 (95% CI: 0.956–0.989), and 0.996 (95% CI: 0.957–0.997), respectively.Conclusions: The residual network-based algorithm can effectively automatically diagnose AMI and MI location from 12-lead ECGs.

2020 ◽  
Vol 163 (6) ◽  
pp. 1156-1165
Author(s):  
Juan Xiao ◽  
Qiang Xiao ◽  
Wei Cong ◽  
Ting Li ◽  
Shouluan Ding ◽  
...  

Objective To develop an easy-to-use nomogram for discrimination of malignant thyroid nodules and to compare diagnostic efficiency with the Kwak and American College of Radiology (ACR) Thyroid Imaging, Reporting and Data System (TI-RADS). Study Design Retrospective diagnostic study. Setting The Second Hospital of Shandong University. Subjects and Methods From March 2017 to April 2019, 792 patients with 1940 thyroid nodules were included into the training set; from May 2019 to December 2019, 174 patients with 389 nodules were included into the validation set. Multivariable logistic regression model was used to develop a nomogram for discriminating malignant nodules. To compare the diagnostic performance of the nomogram with the Kwak and ACR TI-RADS, the area under the receiver operating characteristic curve, sensitivity, specificity, and positive and negative predictive values were calculated. Results The nomogram consisted of 7 factors: composition, orientation, echogenicity, border, margin, extrathyroidal extension, and calcification. In the training set, for all nodules, the area under the curve (AUC) for the nomogram was 0.844, which was higher than the Kwak TI-RADS (0.826, P = .008) and the ACR TI-RADS (0.810, P < .001). For the 822 nodules >1 cm, the AUC of the nomogram was 0.891, which was higher than the Kwak TI-RADS (0.852, P < .001) and the ACR TI-RADS (0.853, P < .001). In the validation set, the AUC of the nomogram was also higher than the Kwak and ACR TI-RADS ( P < .05), each in the whole series and separately for nodules >1 or ≤1 cm. Conclusions When compared with the Kwak and ACR TI-RADS, the nomogram had a better performance in discriminating malignant thyroid nodules.


2018 ◽  
Vol 10 (3) ◽  
Author(s):  
Pokpong Piriyakhuntorn ◽  
Adisak Tantiworawit ◽  
Thanawat Rattanathammethee ◽  
Chatree Chai-Adisaksopha ◽  
Ekarat Rattarittamrong ◽  
...  

This study aims to find the cut-off value and diagnostic accuracy of the use of RDW as initial investigation in enabling the differentiation between IDA and NTDT patients. Patients with microcytic anemia were enrolled in the training set and used to plot a receiving operating characteristics (ROC) curve to obtain the cut-off value of RDW. A second set of patients were included in the validation set and used to analyze the diagnostic accuracy. We recruited 94 IDA and 64 NTDT patients into the training set. The area under the curve of the ROC in the training set was 0.803. The best cut-off value of RDW in the diagnosis of NTDT was 21.0% with a sensitivity and specificity of 81.3% and 55.3% respectively. In the validation set, there were 34 IDA and 58 NTDT patients using the cut-off value of >21.0% to validate. The sensitivity, specificity, positive predictive value and negative predictive value were 84.5%, 70.6%, 83.1% and 72.7% respectively. We can therefore conclude that RDW >21.0% is useful in differentiating between IDA and NTDT patients with high diagnostic accuracy


2019 ◽  
Vol 31 (5) ◽  
pp. 665-673 ◽  
Author(s):  
Maud Menard ◽  
Alexis Lecoindre ◽  
Jean-Luc Cadoré ◽  
Michèle Chevallier ◽  
Aurélie Pagnon ◽  
...  

Accurate staging of hepatic fibrosis (HF) is important for treatment and prognosis of canine chronic hepatitis. HF scores are used in human medicine to indirectly stage and monitor HF, decreasing the need for liver biopsy. We developed a canine HF score to screen for moderate or greater HF. We included 96 dogs in our study, including 5 healthy dogs. A liver biopsy for histologic examination and a biochemistry profile were performed on all dogs. The dogs were randomly split into a training set of 58 dogs and a validation set of 38 dogs. A HF score that included alanine aminotransferase, alkaline phosphatase, total bilirubin, potassium, and gamma-glutamyl transferase was developed in the training set. Model performance was confirmed using the internal validation set, and was similar to the performance in the training set. The overall sensitivity and specificity for the study group were 80% and 70% respectively, with an area under the curve of 0.80 (0.71–0.90). This HF score could be used for indirect diagnosis of canine HF when biochemistry panels are performed on the Konelab 30i (Thermo Scientific), using reagents as in our study. External validation is required to determine if the score is sufficiently robust to utilize biochemical results measured in other laboratories with different instruments and methodologies.


2021 ◽  
Author(s):  
suhuai Wang ◽  
jingjie Li ◽  
Lin Sun ◽  
Jianing Cai ◽  
Shihui Wang ◽  
...  

Abstract Background: Early identification of the occurrence of arrhythmia in patients with acute myocardial infarction plays an essential role in clinical decision-making. The present study attempted to use machine learning (ML) methods to build predictive models of arrhythmia after acute myocardial infarction (AMI).Methods: A total of 2084 patients with acute myocardial infarction were enrolled in this study. The primary outcome is whether tachyarrhythmia occurred during admission containing atrial arrhythmia, ventricular arrhythmia, and supraventricular tachycardia. All data is randomly divided into training set (80%) and internal testing set (20%). Three machine learning algorithms (including decision tree, random forest, and artificial neural network) learn from the training set to build a model, use the testing set to evaluate the prediction performance, and compare it with the model built by the variable set involved GRACE risk score.Results:Three ML models predict the occurrence of tachyarrhythmia after AMI. After variable selection, the artificial neural network (ANN) model achieves the highest accuracy of 0.654 (95% CI, 0.625--0.683). The area under the value of the curve (AUC) is 0.597 (95% CI, 0.568-0.626). The highest accuracy of the model built using the Grace variable set is 0.627 (95% CI, 0.598-0.656), and the AUC value is 0.574 (95% CI, 0.545-0.603).Conclusions:We used advanced machine learning methods to build prediction models for tachyarrhythmia after AMI for the first time (especially the ANN model has the best performance). The current study can supplement the current AMI risk score, provide a reliable evaluation method for the clinic, and broaden the new horizons of ML and clinical research.Trial registration:Clinical Trial Registry No.: ChiCTR2100041960.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Suhuai Wang ◽  
Jingjie Li ◽  
Lin Sun ◽  
Jianing Cai ◽  
Shihui Wang ◽  
...  

Abstract Background Early identification of the occurrence of arrhythmia in patients with acute myocardial infarction plays an essential role in clinical decision-making. The present study attempted to use machine learning (ML) methods to build predictive models of arrhythmia after acute myocardial infarction (AMI). Methods A total of 2084 patients with acute myocardial infarction were enrolled in this study. (All data is available on Github: https://github.com/wangsuhuai/AMI-database1.git). The primary outcome is whether tachyarrhythmia occurred during admission containing atrial arrhythmia, ventricular arrhythmia, and supraventricular tachycardia. All data is randomly divided into a training set (80%) and an internal testing set (20%). Apply three machine learning algorithms: decision tree, random forest (RF), and artificial neural network (ANN) to learn the training set to build a model, then use the testing set to evaluate the prediction performance, and compare it with the model built by the Global Registry of Acute Coronary Events (GRACE) risk variable set. Results Three ML models predict the occurrence of tachyarrhythmias after AMI. After variable selection, the artificial neural network (ANN) model has reached the highest accuracy rate, which is better than the model constructed using the Grace variable set. After applying SHapley Additive exPlanations (SHAP) to make the model interpretable, the most important features are abnormal wall motion, lesion location, bundle branch block, age, and heart rate. Among them, RBBB (odds ratio [OR]: 4.21; 95% confidence interval [CI]: 2.42–7.02), ≥ 2 ventricular walls motion abnormal (OR: 3.26; 95% CI: 2.01–4.36) and right coronary artery occlusion (OR: 3.00; 95% CI: 1.98–4.56) are significant factors related to arrhythmia after AMI. Conclusions We used advanced machine learning methods to build prediction models for tachyarrhythmia after AMI for the first time (especially the ANN model that has the best performance). The current study can supplement the current AMI risk score, provide a reliable evaluation method for the clinic, and broaden the new horizons of ML and clinical research. Trial registration Clinical Trial Registry No.: ChiCTR2100041960.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
X Y Zhao ◽  
J G Yang ◽  
T G Chen ◽  
J M Wang ◽  
X Li ◽  
...  

Abstract Background Prediction of in-hospital bleeding is critical for clinical decision making for acute myocardial infarction (AMI) patients undergoing percutaneous coronary intervention (PCI). Machine learning methods can automatically select the combination of the important features and learn their underlying relationship with the outcome. Objective We aim to evaluate the predictive value of machine learning methods to predict in-hospital bleeding for AMI patients. Methods We used data from the multicenter China Acute Myocardial Infarction (CAMI) registry. We randomly partitioned the cohort into derivation set (75%) and validation set (25%). Using data from the derivation set, we applied a state-of-art machine learning algorithm, XGBoost, to automatically select features from 106 candidate variables and train a risk prediction model to predict in-hospital bleeding (BARC 3, 5 definition). Results 16736 AMI patients who underwent PCI were consecutively included in the analysis, while 70 (0.42%) patients had in-hospital bleeding followed the BARC 3,5 definition of bleeding. Fifty-nine features were automatically selected from the candidate features and were used to construct the prediction model. The area under the curve (AUC) of the XGBoost model was 0.816 (95% CI: 0.745–0.887) on the validation set, while AUC of the CRUSADE risk score was 0.723 (95% CI: 0.619–0.828). Relative contribution of the 12 most important features Feature Relative Importance Direct bilirubin 0.078 Heart rate 0.077 CKMB 0.076 Creatinine 0.064 GPT 0.052 Age 0.048 SBP 0.036 TG 0.035 Glucose 0.035 HCT 0.031 Total bilirubin 0.030 Neutrophil 0.030 ROC of the XGBoost model and CRUSADE Conclusion The XGBoost model derived from the CAMI cohort accurately predicts in-hospital bleeding among Chinese AMI patients undergoing PCI. Acknowledgement/Funding the CAMS innovation Fund for Medical Sciences (CIFMS) (2016-12M-1-009); the Twelfth Five-year Planning Project of China (2011BAI11B02)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeoung Kun Kim ◽  
Yoo Jin Choo ◽  
Hyunkwang Shin ◽  
Gyu Sang Choi ◽  
Min Cheol Chang

AbstractDeep learning (DL) is an advanced machine learning approach used in diverse areas such as bioinformatics, image analysis, and natural language processing. Here, using brain magnetic resonance imaging (MRI) data obtained at early stages of infarcts, we attempted to develop a convolutional neural network (CNN) to predict the ambulatory outcome of corona radiata infarction at six months after onset. We retrospectively recruited 221 patients with corona radiata infarcts. A favorable outcome of ambulatory function was defined as a functional ambulation category (FAC) score of ≥ 4 (able to walk without a guardian’s assistance), and a poor outcome of ambulatory function was defined as an FAC score of < 4. We used a CNN algorithm. Of the included subjects, 69.7% (n = 154) were assigned randomly to the training set and the remaining 30.3% (n = 67) were assigned to the validation set to measure the model performance. The area under the curve was 0.751 (95% CI 0.649–0.852) for the prediction of ambulatory function with the validation dataset using the CNN model. We demonstrated that a CNN model trained using brain MRIs captured at an early stage after corona radiata infarction could be helpful in predicting long-term ambulatory outcomes.


Author(s):  
Runwen Hu ◽  
Guanqi Ruan ◽  
Shijun Xiang ◽  
Minghui Huang ◽  
Qiaoyi Liang ◽  
...  

AbstractBackgroundCoronavirus disease 2019 (COVID-19) has surprised the world since the beginning of 2020, and the rapid growth of COVID-19 is beyond the capability of doctors and hospitals that could deal in many areas. The chest computed tomography (CT) could be served as an effective tool in detection of COVID-19. It is valuable to develop automatic detection of COVID-19.Materials and MethodsThe collected dataset consisted of 1042 chest CT images (including 521 COVID-19, 397 healthy, 76 bacterial pneumonia and 48 SARS) obtained by exhaustively searching available data on the Internet. Then, these data are divided into three sets, referred to training set, validation set and testing set. Sixteen data augmentation operations are designed to enrich the training set in deep learning training phase. Multiple experiments were conducted to analyze the performance of the model in the detection of COVID-19 both in case of no noisy labels and noisy labels. The performance was assessed by the area under the receiver operating characteristic (AUC), sensitivity, specificity and accuracy.ResultsThe data augmentation operations on the training set are effective for improvement of the model performance. The area under the receiver operating characteristic curve is 0.9689 with (95% CI: 0.9308, 1) in case of no noisy labels for the classification of COVID-19 from heathy subject, while the per-exam sensitivity, specificity and accuracy for detecting COVID-19 in the independent testing set are 90.52%, 91.58% and 91.21%, respectively. In the classification of COVID-19 from other hybrid cases, the average AUC of the proposed model is 0.9222 with (95%CI: 0.8418, 1) if there are no noisy labels. The model is also robust when part of the training samples is marked incorrectly. The average AUC is 92.23% in the case of noisy labels of 10% in the training set.ConclusionA deep learning model with insufficient samples can be developed by using data augmentation in assisting medical workers in making quick and correct diagnosis of COVID-19.


2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Claudia-Gabriela Moldovanu ◽  
Bianca Boca ◽  
Andrei Lebovici ◽  
Attila Tamas-Szora ◽  
Diana Sorina Feier ◽  
...  

Nuclear grade is important for treatment selection and prognosis in patients with clear cell renal cell carcinoma (ccRCC). This study aimed to determine the ability of preoperative four-phase multiphasic multidetector computed tomography (MDCT)-based radiomics features to predict the WHO/ISUP nuclear grade. In all 102 patients with histologically confirmed ccRCC, the training set (n = 62) and validation set (n = 40) were randomly assigned. In both datasets, patients were categorized according to the WHO/ISUP grading system into low-grade ccRCC (grades 1 and 2) and high-grade ccRCC (grades 3 and 4). The feature selection process consisted of three steps, including least absolute shrinkage and selection operator (LASSO) regression analysis, and the radiomics scores were developed using 48 radiomics features (10 in the unenhanced phase, 17 in the corticomedullary (CM) phase, 14 in the nephrographic (NP) phase, and 7 in the excretory phase). The radiomics score (Rad-Score) derived from the CM phase achieved the best predictive ability, with a sensitivity, specificity, and an area under the curve (AUC) of 90.91%, 95.00%, and 0.97 in the training set. In the validation set, the Rad-Score derived from the NP phase achieved the best predictive ability, with a sensitivity, specificity, and an AUC of 72.73%, 85.30%, and 0.84. We constructed a complex model, adding the radiomics score for each of the phases to the clinicoradiological characteristics, and found significantly better performance in the discrimination of the nuclear grades of ccRCCs in all MDCT phases. The highest AUC of 0.99 (95% CI, 0.92–1.00, p < 0.0001) was demonstrated for the CM phase. Our results showed that the MDCT radiomics features may play a role as potential imaging biomarkers to preoperatively predict the WHO/ISUP grade of ccRCCs.


1984 ◽  
Vol 30 (8) ◽  
pp. 1399-1401 ◽  
Author(s):  
J J Fenton ◽  
S Brunstetter ◽  
W C Gordon ◽  
D F Rippe ◽  
M L Bell

Abstract A new commercial enzyme immunoassay kit for quantification of creatine kinase-MB (CK-MB) isoenzyme was compared with its electrophoretic determination with respect to efficacy in diagnosis of acute myocardial infarction. Enzygnost CK-MB (Behring Diagnostics) is a solid-phase "sandwich"-type enzyme immunoassay with antibodies to the B-subunit coated on plastic tubes and peroxidase-conjugated antibodies to the M-subunit added after incubation with sample. This kit is designed to measure only CK-MB and not CK-MM, CK-BB, adenylate kinase, or atypical CK molecules. The linear-regression equation comparing the two methods was: Enzygnost = 0.98 . electrophoresis - 0.72, with a correlation coefficient of r = 0.967 (n = 143). For 51 patients admitted for diagnosis of possible acute myocardial infarction, the Enzygnost kit achieved 100% sensitivity, specificity, and efficiency in predicting the correct diagnosis. Corresponding values for the electrophoretic assay were: 95.5% sensitivity, 93.1% specificity, and 94.1% efficiency. We conclude that this kit method provides an excellent alternative to electrophoresis.


Sign in / Sign up

Export Citation Format

Share Document