scholarly journals Long-Term Outcomes of Peripheral Blood Mononuclear Cells in the Treatment of Angiitis-Induced No-Option Critical Limb-Threatening Ischemia

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaolang Jiang ◽  
Hao Liu ◽  
Tianyue Pan ◽  
Shiyang Gu ◽  
Yuan Fang ◽  
...  

Background: Peripheral blood mononuclear cells (PBMNCs) showed encouraging short outcomes in the treatment of angiitis-induced no-option critical limb-threatening ischemia (AICLTI) in the pilot study. This study aimed to demonstrate the long-term outcomes of this treatment.Methods: From May 2014 to December 2018, patients diagnosed with AICLTI and treated by autotransplantation of PBMNCs in our center were enrolled and analyzed. The primary endpoint was major amputation-free survival (MAFS), the secondary endpoints included peak pain-free walking time (PPFWT), Wong-Baker FACES pain rating scale score (WFPRSS), labor recovery, ankle-brachial index (ABI), transcutaneous partial oxygen pressure (TcpO2), and SF-36v2 scores.Results: A total of 58 patients were enrolled. During a minimal follow-up of 36 months, the MAFS was 93.1% and the labor competence restored rate was 62.1%. The WFPRSS was decreased from 8.7 ± 1.6 to 1.6 ± 3.2, and PPFWT was significantly improved from 2.9 ± 4.2 min to 16.6 ± 6.9 min. The quality of life was also significantly improved at each follow-up point. Perfusion evaluating parameters, such as ABI and TcPO2, were also significantly improved. No critical adverse event was observed during the treatment and follow-up period.Conclusions: The treatment of AICLTI by autotransplantation of PBMNCs demonstrated encouraging long-term results. It could not only restore labor competence, improve the quality of life, but also significantly reduce the major amputation rate.

2021 ◽  
Vol 10 (10) ◽  
pp. 2213
Author(s):  
Alessia Scatena ◽  
Pasquale Petruzzi ◽  
Filippo Maioli ◽  
Francesca Lucaroni ◽  
Cristina Ambrosone ◽  
...  

Peripheral blood mononuclear cells (PBMNCs) are reported to prevent major amputation and healing in no-option critical limb ischemia (NO-CLI). The aim of this study is to evaluate PBMNC treatment in comparison to standard treatment in NO-CLI patients with diabetic foot ulcers (DFUs). The study included 76 NO-CLI patients admitted to our centers because of CLI with DFUs. All patients were treated with the same standard care (control group), but 38 patients were also treated with autologous PBMNC implants. Major amputations, overall mortality, and number of healed patients were evaluated as the primary endpoint. Only 4 out 38 amputations (10.5%) were observed in the PBMNC group, while 15 out of 38 amputations (39.5%) were recorded in the control group (p = 0.0037). The Kaplan–Meier curves and the log-rank test results showed a significantly lower amputation rate in the PBMNCs group vs. the control group (p = 0.000). At two years follow-up, nearly 80% of the PBMNCs group was still alive vs. only 20% of the control group (p = 0.000). In the PBMNC group, 33 patients healed (86.6%) while only one patient healed in the control group (p = 0.000). PBMNCs showed a positive clinical outcome at two years follow-up in patients with DFUs and NO-CLI, significantly reducing the amputation rate and improving survival and wound healing. According to our study results, intramuscular and peri-lesional injection of autologous PBMNCs could prevent amputations in NO-CLI diabetic patients.


2021 ◽  
Author(s):  
Bo Li ◽  
Chunmei Yang ◽  
Gui Ja ◽  
Yansheng Liu ◽  
Na Wang ◽  
...  

Abstract Human peripheral blood mononuclear cells (PBMCs) originate from hematopoietic stem cells (HSCs) in the bone marrow, which mainly includes lymphocytes (T cells, B cells, and natural killer [NK] cells) and monocytes. Cryopreserved PBMCs providing biobank resources are crucial for clinical application or scientific research. Here, we used flow cytometry to explore the influence of long-term cryopreservation on the quality of PBMCs with the aim of providing important evidence for the effective utilization of biobank resources. The PBMCs were isolated from the peripheral blood, which was collected from volunteers in the hospital. After long-term cryopreservation in liquid nitrogen, we analyzed the changes in cell numbers, viability, and multiple subtypes of PBMCs and studied the apoptosis, proliferation, activation, function, and status of T cells in comparison with freshly isolated PBMCs by flow cytometry, and then further tracked the effects of long-term cryopreservation on the same sample. Although the different cell types in the PBMCs dynamically changed compared with those in the freshly isolated samples, PBMC recovery and viability remained stable after long-term cryopreservation, and the number of most innate immune cells (e.g., monocytes and B cells) was significantly reduced compared to that of the freshly isolated PBMCs or long-term cryopreserved PBMCs; more importantly, the proportion of T cell subtypes, apoptosis, proliferation, and functional T cells, except for Tregs, were not affected by long-term cryopreservation. However, the proportions of activated T, naïve T, central memory T, effector T, and effector memory T cells dynamically changed after long-term cryopreservation. This article provides important evidence for the effective utilization of biobank resources. Long-term cryopreserved PBMCs can be partly used as biological resources for clinical research or basic studies, but the effect of cryopreservation on PBMCs should be considered when selecting cell samples, especially in research relating to activating or inhibiting function.


2003 ◽  
Vol 77 (20) ◽  
pp. 10751-10759 ◽  
Author(s):  
Roseanne C. Wilkinson ◽  
Claire K. Murrell ◽  
Rebecca Guy ◽  
Gail Davis ◽  
Joanna M. Hall ◽  
...  

ABSTRACT Endemic simian retrovirus (SRV) infection can cause fatal simian AIDS in Macaca fascicularis, but many individuals survive with few clinical signs. To further clarify the parameters of SRV pathogenesis, we investigated the persistence of viral DNA forms in relation to active viremia, antibody response, and transmissibility of infection. In M. fascicularis from endemically SRV-2-infected colonies, viral DNA was present in both linear and unintegrated long terminal repeat circular forms in peripheral blood mononuclear cells of all viremic and many nonviremic animals. Long-term followup of three individuals with distinct infection patterns demonstrated persistence of linear and circular forms of viral DNA in peripheral blood mononuclear cells and tissues, irrespective of viremia or antibody status, but reactivation of latent infections was not observed. The role of viral DNA in transmission and early pathogenesis of SRV-2 was investigated by inoculation of SRV-2 DNA-positive blood into groups of naïve M. fascicularis from either a viremic or nonviremic donor and subsequent analysis of the virological and serological status of the recipients. Transmission of SRV and development of anti-SRV antibodies were only observed in recipients of blood from the viremic donor; transfer of SRV provirus and unintegrated circular DNA in blood from the nonviremic donor did not lead to infection of the recipients. These results indicate that a proportion of M. fascicularis are able to effectively control the replication and infectivity of SRV despite long-term persistence of viral DNA forms in infected lymphocytes.


2015 ◽  
Vol 30 (suppl_3) ◽  
pp. iii642-iii642
Author(s):  
Sławomir C. Zmonarski ◽  
Katarzyna Koscielska ◽  
Madziarska Katarzyna ◽  
Myszka Marta ◽  
Magott-Procelewska Maria ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Francisco Díez-Fuertes ◽  
Humberto Erick De La Torre-Tarazona ◽  
Esther Calonge ◽  
Maria Pernas ◽  
María del Mar Alonso-Socas ◽  
...  

Abstract The elite controller (EC)-long term non-progressor (LTNP) phenotype represent a spontaneous and advantageous model of HIV-1 control in the absence of therapy. The transcriptome of peripheral blood mononuclear cells (PBMCs) collected from EC-LTNPs was sequenced by RNA-Seq and compared with the transcriptomes from other phenotypes of disease progression. The transcript abundance estimation combined with the use of supervised classification algorithms allowed the selection of 20 genes and pseudogenes, mainly involved in interferon-regulated antiviral mechanisms and cell machineries of transcription and translation, as the best predictive genes of disease progression. Differential expression analyses between phenotypes showed an altered calcium homeostasis in EC-LTNPs evidenced by the upregulation of several membrane receptors implicated in calcium-signaling cascades and intracellular calcium-mobilization and by the overrepresentation of NFAT1/Elk-1-binding sites in the promoters of the genes differentially expressed in these individuals. A coordinated upregulation of host genes associated with HIV-1 reverse transcription and viral transcription was also observed in EC-LTNPs –i.e. p21/CDKN1A, TNF, IER3 and GADD45B. We also found an upregulation of ANKRD54 in EC-LTNPs and viremic LTNPs in comparison with typical progressors and a clear alteration of type-I interferon signaling as a consequence of viremia in typical progressors before and after receiving antiretroviral therapy.


Sign in / Sign up

Export Citation Format

Share Document