scholarly journals Carbon Dioxide and Methane Flux Response and Recovery From Drought in a Hemiboreal Ombrotrophic Fen

2021 ◽  
Vol 8 ◽  
Author(s):  
J. B Keane ◽  
S. Toet ◽  
P. Ineson ◽  
P. Weslien ◽  
J. E. Stockdale ◽  
...  

Globally peatlands store 500 Gt carbon (C), with northern blanket bogs accumulating 23 g C m−2 y−1 due to cool wet conditions. As a sink of carbon dioxide (CO2) peat bogs slow anthropogenic climate change, but warming climate increases the likelihood of drought which may reduce net ecosystem exchange (NEE) and increase soil respiration, tipping C sinks to sources. High water tables make bogs a globally important source of methane (CH4), another greenhouse gas (GHG) with a global warming potential (GWP) 34 times that of CO2. Warming may increase CH4 emissions, but drying may cause a reduction. Predicted species composition changes may also influence GHG balance, due to different traits such as erenchyma, e.g., Eriophorum vaginatum (eriophorum) and non-aerenchymatous species, e.g., Calluna vulgaris (heather). To understand how these ecosystems will respond to climate change, it is vital to measure GHG responses to drought at the species level. An automated chamber system, SkyLine2D, measured NEE and CH4 fluxes near-continuously from an ombrotrophic fen from August 2017 to September 2019. Four ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather and water, hypothesizing that fluxes would significantly differ between ecotypes. The 2018 drought allowed comparison of fluxes between drought and non-drought years (May to September), and their recovery the following year. Methane emissions differed between ecotypes (p < 0.02), ordered high to low: eriophorum > sphagnum > water > heather, ranging from 23 to 8 mg CH4-C m−2 d−1. Daily NEE was similar between ecotypes (p > 0.7), but under 2018 drought conditions all ecotypes were greater sources of CO2 compared to 2019, losing 1.14 g and 0.24 g CO2-C m−2 d−1 respectively (p < 0.001). CH4 emissions were ca. 40% higher during 2018 than 2019, 17 mg compared to 12 mg CH4-C m−2 d−1 (p < 0.0001), and fluxes exhibited hysteresis with water table depth. A lag of 84–88 days was observed between rising water table and increased CH4 emissions. A significant interaction between ecotype and year showed fluxes from open water did not return to pre-drought levels. Our findings suggest that short-term drought may lead to a net increase in C emissions from northern wetlands.

2020 ◽  
Author(s):  
James Benjamin Keane ◽  
Sylvia Toet ◽  
Phil Ineson ◽  
Per Weslien ◽  
Leif Klemedtsson

<p>Peatlands are a globally important store of approximately 500 Gt carbon (C), with northern blanket bogs accumulating ca. 23 g C m<sup>-2</sup> y<sup>-1</sup> from undecomposed organic material due to prevailing cool wet conditions. As a sink of carbon dioxide (CO<sub>2</sub>) they act as an important brake on anthropogenic climate change, but in the warming climate the likelihood of drought will increase. However, it is unknown how drought will affect the GHG balance of peatlands: dryer, warmer conditions will likely reduce net ecosystem exchange (NEE) of CO<sub>2</sub> and increase soil respiration, potentially tipping these landscapes from sinks to sources of C. High water tables mean blanket bogs are major source of methane (CH<sub>4</sub>), an important greenhouse gas (GHG) with a global warming potential (GWP) 34 times that of CO<sub>2 </sub>over 100 years, but this may change in the future climate. It is further expected that the changing climate will alter blanket bog species composition, which may also influence the GHG balance, due to differences in plant traits such as those which form aerenchyma, e.g. <em>Eriophorum vaginatum</em> (eriophorum) and non-aerenchymatous species, e.g. <em>Calluna vulgaris</em> (heather). In order to understand how these important C stores will respond to climate change, it is vital to measure GHG responses to drought at the species level.   </p><p>We used an automated chamber system, SkyLine2D, to measure NEE and CH<sub>4</sub> fluxes near-continuously from an ombrotrophic blanket peat bog. Five general ecotypes were identified: <strong>sphagnum</strong> (<em>Sphagnum</em> spp), <strong>eriophorum</strong>, <strong>heather</strong>, <strong>water</strong> and <strong>mix</strong>tures of species, with five replicates of each sampled. We followed the fluxes of CO<sub>2</sub> throughout 2017- 2019 and CH<sub>4</sub> throughout 2017- 2018, hypothesising that GHG fluxes would significantly differ between ecotypes. In 2018, the bog experienced drought conditions, allowing the comparison of NEE between drought and non-drought years, and the potential to recover the following year. Contemporaneous measurements of environmental variables were collected to infer details regarding the drivers of GHG fluxes.</p><p>We found significant differences in CH<sub>4</sub> emissions between ecotypes, F= 2.71, p< 0.02, ordered high to low: eriophorum > sphagnum > water > heather> mix, ranging from ca. 1.5 mg CH<sub>4</sub>-C m<sup>-2</sup> d<sup>-1</sup> to 0.5 mg CH<sub>4</sub>-C m<sup>-2</sup> d<sup>-1</sup>. There were no significant differences in NEE between ecotypes, F= 0.54, p> 0.7, however, under 2018 drought conditions all ecotypes were net sources of CO<sub>2</sub>. We will also present NEE from 2019, when precipitation levels returned to typical conditions. Our results indicate that drought and shifts in vegetation composition under future climate may alter the C balance of hemi-boreal and potentially act as a positive feedback to climate change in a long-term scenario.</p>


2018 ◽  
Author(s):  
Tim Eckhardt ◽  
Christian Knoblauch ◽  
Lars Kutzbach ◽  
Gillian Simpson ◽  
Evgeny Abakumov ◽  
...  

Abstract. Arctic tundra ecosystems are currently facing rates of amplified climate change. This is critical as these ecosystems store significant amounts of carbon in their soils, which can be mineralized to CO2 and CH4 and released to the atmosphere. To understand how the CO2 net ecosystem exchange (NEE) fluxes will react to changing climatic conditions, it is necessary to understand the individual responses of the physiological processes contributing to CO2 NEE. Therefore, this study aimed: (i) to partition NEE fluxes at the soil-plant-atmosphere interface in an arctic tundra ecosystem; and (ii) to identify the main environmental drivers of these fluxes. Hereby, the NEE fluxes were partitioned into gross primary productivity (GPP) and ecosystem respiration (Reco) and further into autotrophic (RA) and heterotrophic respiration (RH). The study examined flux data collected during the growing season in 2015 using closed chamber measurements in a polygonal tundra landscape in the Lena River Delta, northeastern Siberia. The measured fluxes on the microscale (1 m–10 m) were used to model the NEE, GPP, Reco, RH, RA and net ecosystem production (NPP) over the growing season. Here, for the first time, the differing response of in situ measured RA and RH fluxes from permafrost-affected soils to hydrological conditions have been examined. It was shown that low RA fluxes are associated to a high water table, most likely due to the submersion of mosses, while an effect of water table fluctuations on RH fluxes was not observed. Furthermore, this work found the polygonal tundra in the Lena River Delta to be a sink for atmospheric CO2 during the growing season. Spatial heterogeneity was apparent with the net CO2 uptake at a wet, depressed polygon center being more than twice as high as that measured at a drier polygon rim. In addition to higher GPP fluxes, the differences in NEE between the two microsites were caused by lower Reco fluxes at the center compared to the rim. Here, the contrasting hydrological conditions caused the CO2 flux differences between the microsites, where high water levels lad to lower decomposition rates due to anoxic conditions.


2010 ◽  
Vol 90 (3) ◽  
pp. 441-449 ◽  
Author(s):  
K S Wilson ◽  
E R Humphreys

Climate change is expected to alter the Arctic’s carbon (C) balance and changes in these C-rich ecosystems may contribute to a positive feedback on global climate change. Low-center mudboils, a form of patterned ground in the Arctic, are distinct landforms in which the exchange of greenhouse gases between the atmosphere and soil has not been fully characterized, but which may have an important influence on the overall C balance of tundra ecosystems. Chamber systems were used to sample net ecosystem exchange of CO2 (NEE) and CO2 and CH4 effluxes along a 35-m transect intersecting two mudboils in a wet sedge fen in Canada’s Southern Arctic (lat. 64°52′N, long. 111°34′W) during the summer months in 2008. Mudboil features gave rise to dramatic variations in vegetation, soil temperature and thaw depth, and soil organic matter content along this transect. Variations in NEE were driven by variations in the amount of vascular vegetation, while CO2 and CH4 effluxes were remarkably similar among the two mudboil (CO2 effluxes: 1.1 ± 0.9 and 1.4 ± 0.7 µmol m-2 s-1; CH4 effluxes: 83.1 ± 189.4 and 23.1 ± 9.4 nmol m-2 s-1, ± 1 standard deviation) and the sedge fen (CO2 effluxes: 1.6 ± 0.7 mol m-2 s-1 ; CH4 effluxes: 28.0 ± 62.0 nmol m-2 s-1) sampling areas. Vegetation appeared to play an important role in limiting temporal variations in CH4 effluxes through plant mediated transport in both mudboil and sedge fen sampling areas. One of the mudboils had negligible vascular plant colonization presumably due to more active frost heave processes. The relatively high CO2 and CH4 efflux in this mudboil area was speculated to be a result of growth and decomposition of cryptogamic organisms, inflow of dissolved organic C, and warmer soil temperatures. Key words: Patterned ground, nonsorted circle, tundra, net ecosystem exchange, methane, carbon dioxide


2021 ◽  
Author(s):  
Martin Maddison ◽  
Gert Veber ◽  
Ain Kull

<p>Northern peatlands are important terrestrial carbon (C) stores, but their ability to sequestrate C is at delicate balance affected by management and also by climate change. The climate change causes less snow pack and warmer winters with faster water table drop in spring and drier summers in most boreal areas. Due to those changes natural peatlands may become C source instead of sink.</p><p>This study presents ecosystem respiration (ER) over five-year period and the annual estimates of net ecosystem exchange (NEE) of CO<sub>2</sub> in Umbusi and Laukasoo in Estonia along disturbance gradient from drained to natural ombrotrophic bog. Both study sites locate next to the active cutaway peatlands. There were four CO<sub>2</sub> flux measurements plots with three measurements points at different distance from the drainage ditch (10, 50, 100 and 200 m in Umbusi; 3, 40, 50, 125 m in Laukasoo) to form a water table depth and soil moisture gradient on both study sites. ER was measured using opaque static chamber throughout of the year in period 2012-2016. A vented and thermostated transparent plastic chamber with removable opaque cover was used for CO<sub>2</sub> exchange measurements. NEE measurements occurred biweekly from April to December in 2015, totally were done 648 measurements. NEE was derived from modelling of ER and gross primary production with temperature, photosynthetically active radiation, water level and days of year (as phenological phase) as driving variables.</p><p>Annual mean NEE at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo were 0.37, 0.28, 0.15, 0.08 and 0.44, 0.34, 0.04, 0.21 kg C m<sup>-2</sup> y<sup>-1</sup>, respectively. Although mean NEE was positive for all plots on both sites, there were also negative annual NEE values in some points in undisturbed plots (100 and 200 m from the ditch in Umbusi and 50 and 125 m in Laukasoo).</p><p>Average water level at four different distance from the ditch toward undisturbed area in Umbusi and Laukasoo during growing period (from the beginning of May to the end of October) in 2015 were -94, -45, -22, -22 and -124, -33, -21, -22 cm, respectively. Monthly mean air temperature and sum of precipitation were not different from the long-term measurements in studied growing period in 2015 while winter was significantly warmer.</p><p>Modelled ER remained high for cold period because of higher air temperature in 2015. Due to higher respiration rate from non-frozen peat layer in cold season, more CO<sub>2</sub> was released back to atmosphere and annually less C was accumulated. Monthly mean air temperature for cold period was 3.5 ºC warmer than the long-term average.</p>


2015 ◽  
Vol 12 (4) ◽  
pp. 1091-1111 ◽  
Author(s):  
T. M. Munir ◽  
M. Perkins ◽  
E. Kaing ◽  
M. Strack

Abstract. Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1–3 years; experimental) and older drained (10–13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock–hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011–2013. The CO2–C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2–C sink of 92, 70 and 76 g m−2, the experimental site was a CO2–C source of 14, 57 and 135 g m−2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2–C m−2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m−2) than at the experimental (58 and 55 g C m−2) and control (52 and 46 g C m−2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained hummocks (exceeding the cumulative respiration losses in hollows induced by the lowered water level × warming). There was an interaction of water level with warming across hummocks that resulted in the largest net CO2 uptake at the warmed drained hummocks. Thus in 2013, the warming treatment enhanced the sink function of the control site by 13 g m−2, reduced the source function of the experimental by 10 g m−2 and significantly enhanced the sink function of the drained site by 73 g m−2. Therefore, drying and warming in continental bogs is expected to initially accelerate CO2–C losses via ecosystem respiration, but persistent drought and warming is expected to restore the peatland's original CO2–C sink function as a result of the shifts in vegetation composition and productivity between the microforms and increased NPP of trees over time.


2015 ◽  
Vol 66 (1) ◽  
pp. 1 ◽  
Author(s):  
Damien Finn ◽  
Ram Dalal ◽  
Athol Klieve

Methane is a potent greenhouse gas with a global warming potential ~28 times that of carbon dioxide. Consequently, sources and sinks that influence the concentration of methane in the atmosphere are of great interest. In Australia, agriculture is the primary source of anthropogenic methane emissions (60.4% of national emissions, or 3 260 kt–1 methane year–1, between 1990 and 2011), and cropping and grazing soils represent Australia’s largest potential terrestrial methane sink. As of 2011, the expansion of agricultural soils, which are ~70% less efficient at consuming methane than undisturbed soils, to 59% of Australia’s land mass (456 Mha) and increasing livestock densities in northern Australia suggest negative implications for national methane flux. Plant biomass burning does not appear to have long-term negative effects on methane flux unless soils are converted for agricultural purposes. Rice cultivation contributes marginally to national methane emissions and this fluctuates depending on water availability. Significant available research into biological, geochemical and agronomic factors has been pertinent for developing effective methane mitigation strategies. We discuss methane-flux feedback mechanisms in relation to climate change drivers such as temperature, atmospheric carbon dioxide and methane concentrations, precipitation and extreme weather events. Future research should focus on quantifying the role of Australian cropping and grazing soils as methane sinks in the national methane budget, linking biodiversity and activity of methane-cycling microbes to environmental factors, and quantifying how a combination of climate change drivers will affect total methane flux in these systems.


2002 ◽  
Vol 28 (1) ◽  
pp. 438-442 ◽  
Author(s):  
I. B. T. Lima ◽  
R. L. Victoria ◽  
E. M. L. M. Novo ◽  
B. J. Feigl ◽  
M. V. R. Ballester ◽  
...  

1989 ◽  
Vol 69 (1) ◽  
pp. 33-38 ◽  
Author(s):  
T. R. MOORE ◽  
R. KNOWLES

The evolution of carbon dioxide and methane was measured from laboratory columns packed with surface (0–30 cm) materials representing a fen, a bog and a swamp and with varying water tables and treated with water containing 10 mg L−1 dissolved organic carbon. Carbon dioxide evolution increased in a linear relationship as the water table was lowered, ranging from 0.3–0.5 g CO2 m−2 d−1 to 6.6–9.4 g CO2 m−2 d−1 for the water table at 10 cm above and 70 cm below the peat surface, respectively. Methane evolution decreased in a logarithmic relationship as the water table was lowered. The fen showed the highest rates of methane flux (28 mg CH4 m−2 d−1 when inundated) and the bog the lowest (0.7 mg CH4 m−2 d−1 when inundated). These differences appeared to be related to the acidity of the soils and their microbial characteristics. Molar ratios of carbon dioxide:methane evolution increased from 4 to 173 under inundated conditions to > 2500 when the water table was at a depth of 70 cm. Key words: Methane, carbon dioxide, water table, organic soils, peatlands


2020 ◽  
Author(s):  
Raphael Müller ◽  
Gareth Clay ◽  
Claudia Blauensteiner ◽  
Erich Inselsbacher ◽  
Karsten Kalbitz ◽  
...  

<p>Root exudates are a key driver of carbon cycling in peatlands. They have been found to influence substrate quality in and methane release from peat (Ström et al., 2003), peat decomposition (Crow & Wieder, 2005) and to cause priming effects (Basiliko et al., 2012). However, investigating the fate of added root exudates in peatlands is very challenging, as it requires the consideration of the gaseous, liquid, and soil phase, a traceable substrate, and as little disturbance as possible.</p><p>We sampled 6 undisturbed peat cores from Pürgschachen Moor, Austria in September 2019. Following transport of the cores to the laboratory in Vienna, we stored the mesocosms in daylight with intact vegetation at 22°C and created ports for pore water sampling in 5, 15, and 25 cm depth. The water table was set to 3 cm below surface by daily addition of artificial Pürgschachen rainfall (20 kg N ha<sup>-1</sup> yr<sup>-1</sup>). After 1 week of incubation for establishment of a baseline, three cores were spiked with 140 mg artificial root exudates consisting of 99% glucose-, acetic acid- and amino acid <sup>13</sup>C following Basiliko et al. (2012) at 15 cm depth. We monitored carbon dioxide (CO<sub>2</sub>), and methane (CH<sub>4</sub>) and <sup>13</sup>CO<sub>2</sub> and <sup>13</sup>CH<sub>4</sub> efflux from the cores daily and sampled dissolved organic carbon (DOC) weekly from the ports. Three weeks after spiking, all cores were drained, drainage water collected, and peat at 5, 15, and 25 cm depth sampled. Upon drying at 60°C, peat C and <sup>13</sup>C content was determined and DOC samples were analysed for C and <sup>13</sup>C content.</p><p>Results show that ca. 20% of spiked substrates were incorporated into peat, but this effect was restricted to 15 cm peat depth and ca. 30% were respired as CO<sub>2</sub>. No priming effect was detected; the spiked cores did not release more CO<sub>2</sub> and CH<sub>4</sub> than the control cores. <sup>13</sup>C concentration in peat at 5 and 25 cm depth showed no increased <sup>13</sup>C concentration.</p><p>These results indicate a low mobility of DOC and a limited effect of root exudate derived substrate in peat bogs with a low water table oscillation, explaining remarkably constant CH<sub>4</sub> release rates reported by Drollinger et al. (2019b).</p><p> </p><p> </p><p>References:</p><p> </p><p>Basiliko, N., Stewart, H., Roulet, N.T., Moore, T.R. (2012): Do Root Exudates Enhance Peat Decomposition? Geomicrobiology Journal 29: 374-378.</p><p> </p><p>Crow SE, Wieder RK. 2005. Sources of CO2 emission from a northern peatland:</p><p>root respiration, exudation, and decomposition. Ecology 86:1825–1834.</p><p> </p><p>Drollinger, S., Kuzyakov, Y., Glatzel, S. (2019a): Effects of peat decomposition on d13C and d15N depth profiles of Alpine bogs. Catena 187: 1-10.</p><p> </p><p>Drollinger, S., Maier, A. Glatzel, S. (2019b): Interannual and seasonal variability in carbon dioxide and methane fluxes of a pine peat bog in the Eastern Alps, Austria. Agricultural and Forest Meteorology 275: 69-78.</p><p> </p><p>Ström, L. Ekberg, A., Mastepanov, M., Christensen, T.R. (2003): The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology 9: 1185-1192.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document