scholarly journals The Nitrogen Cycle in an Epeiric Sea in the Core of Gondwana Supercontinent: A Study on the Ediacaran-Cambrian Bambuí Group, East-central Brazil

2021 ◽  
Vol 9 ◽  
Author(s):  
Paula Luiza Fraga-Ferreira ◽  
Magali Ader ◽  
Sérgio Caetano-Filho ◽  
Pierre Sansjofre ◽  
Gustavo Macedo Paula-Santos ◽  
...  

The Ediacaran-Cambrian transition is marked by the diversification of metazoans in the marine realm. However, this is not recorded by the Ediacaran-Cambrian Bambuí Group of the São Francisco basin, Brazil. Containing the sedimentary record of a partially confined foreland basin system, the Bambuí strata bear rare metazoan remnants and a major carbon isotope positive excursion decoupled from the global record. This has been explained by changes in the paleogeography of the basin, which became a restricted epicontinental sea in the core of the Gondwana supercontinent, promoting episodes of shallow water anoxia. Here, we report new δ15Nbulk data from the two lowermost second-order transgressive-regressive sequences of the Bambuí Group. The results show a rise of δ15N values from +2 to +5‰ in the transgressive system tract of the basal sequence, which was deposited when the basin was connected to other marginal seas. Such excursion is interpreted as an oxygenation event in the Bambuí sea. Above, in the regressive systems tract, δ15N values vary from +2 to +5‰, pointing to instabilities in the N-cyle that are concomitant with the onset of basin restrictions, higher sedimentary supply/accommodation ratios, and the episodic anoxia. In the transgressive systems tract, the δ15N values stabilise at ∼+3.5‰, pointing to the establishment of an appreciable nitrate pool in shallow waters in spite of the basin full restriction as marked by the onset of a positive carbon isotope excursion. In sum, our data show that the N-cycle and its fluctuations were associated with variations in sedimentary supply/accommodation ratios induced by tectonically-related paleogeographic changes. The instability of the N-cycle and redox conditions plus the scarcity of nitrate along regression episodes might have hindered the development of early benthic metazoans within the Bambuí seawater and probably within other epicontinental seas during the late Ediacaran-Cambrian transition.

2019 ◽  
Author(s):  
Deborah C. Morales ◽  
◽  
Ganqing Jiang ◽  
Shichun Huang ◽  
Audrey Warren ◽  
...  

2021 ◽  
Author(s):  
Linda Elkins-Tanton ◽  
Steven Grasby ◽  
Benjamin Black ◽  
Roman Veselovskiy ◽  
Omid Ardakani ◽  
...  

<p>The Permo-Triassic Extinction was the most severe in Earth history. The Siberian Traps eruptions are strongly implicated in the global atmospheric changes that likely drove the extinction. A sharp negative carbon isotope excursion coincides within geochronological uncertainty with the oldest dated rocks from the Norilsk section of the Siberian flood basalts. The source of this light carbon has been debated for decades.</p><p>We focused on the voluminous volcaniclastic rocks of the Siberian Traps, relatively unstudied as potential carriers of carbon-bearing gases. Over six field seasons we collected rocks from across the Siberian platform and show the first direct evidence that the earliest eruptions particularly in the southern part of the province burned large volumes of a combination of vegetation and coal. Samples from the Maymecha-Kotuy region, from the Nizhnyaya Tunguska, Podkamennaya Tunguska, and Angara Rivers all show evidence of high-temperature organic matter carbonization and combustion.</p><p>Field evidence indicates a process in which ascending magmas entrain xenoliths of coal and carbonaceous sediments that are carbonized in the subsurface and also combusted either through reduction of magmas or when exposed to the atmosphere. We demonstrate that the volume and composition of organic matter interactions with magmas may explain the global carbon isotope signal, and have significantly driven the extinction.</p>


2021 ◽  
Author(s):  
Emilia Jarochowska ◽  
Oskar Bremer ◽  
Alexandra Yiu ◽  
Tiiu Märss ◽  
Henning Blom ◽  
...  

<p>The Ludfordian Carbon Isotope Excursion (LCIE) reached the highest known δ<sup>13</sup>C values in the Phanerozoic. It was a global environmental perturbation manifested in a rapid regression attributed to glacial eustasy. Previous studies suggested that it has also heavily affected the diversity of conodonts, early vertebrates and reef ecosystems, but the timing of the crisis and recovery remained complicated owing to the lateral variability of δ<sup>13</sup>C values in epeiric platforms and rapid facies shifts, which drove faunal distribution. One of the best records of this interval is available in the Swedish island of Gotland, which preserves tectonically undisturbed strata deposited in a Silurian tropical carbonate platform. We revisited the world-renowned collection of the late Lennart Jeppsson, hosted at the Swedish Museum of Natural History, Stockholm, which holds the key to reconstruct the dynamics of faunal immigration and diversification following the LCIE. Here we focus on the Burgen erosional outlier, which remained a mystery, as it had been correlated with the excursion strata, but preserved a high diversity of conodonts and reefal ecosystems. We re-examined key outcrops and characterized macro- and microfacies, as well as chemostratigraphy and unpublished fauna in the collection. Strata in the Burgen outlier represent back-shoal facies of the Burgsvik Oolite Member and correspond to the Ozarkodina snajdri Conodont Biozone. The shallow-marine position compared to the more continental setting of coeval strata in southern Gotland, is reflected in the higher δ<sup>13</sup>C<sub>carb</sub> values, reaching +9.2‰. The back-shoal succession in this outcrop includes reefs, which contain a large proportion of microbial carbonates and have therefore been previously compared with low-diversity buildups developed in a stressed ecosystem. However, the framework of these reefs is built by a diverse coral-stromatoporoid-bryozoan fauna, indicating that a high microbial contribution might be a characteristic of the local carbonate factory rather than a reflection of restricted conditions. In the case of conodonts, impoverishment following the LCIE might be a product of facies preferences, as the diverse environments in the outlier yielded at least 20 of the 21 species known from the Burgsvik Formation in Gotland. Fish diversity also returned to normal levels following the LCIE with an estimated minimum of 9 species. Thelodont scales appear to dominate samples from the Burgen outlier, which is in line with previous reports. Our observations highlight how palaeoenvironmental reconstructions inform fossil niche and diversity analyses, but also how fossil museum collections continuously contribute new data on past biodiversity.</p>


2021 ◽  
Vol 51 (1) ◽  
pp. 4-13
Author(s):  
Sonal Khanolkar ◽  
Tathagata Roy Choudhury ◽  
Pratul Kumar Saraswati ◽  
Santanu Banerjee

ABSTRACT This study focuses on marine sediments of the late Paleocene-early Eocene (∼55.5–49 Ma) interval from the Jaisalmer Basin of western India. It demarcates the Paleocene Eocene Thermal Maximum (PETM) using foraminiferal biostratigraphy and carbon isotope stratigraphy. A negative carbon isotope excursion of 4.5‰ delineates the PETM within the basin. We demarcate five foraminiferal biofacies using the detrended correspondence analysis. These reflect characteristics of ecology, bathymetry, relative age, and environment of deposition of the foraminifera. They record the response of foraminifera to the warmth of the PETM. Biofacies A was deposited within an inner neritic setting ∼55.5 Ma and includes benthic foraminifera Haplophragmoides spp., Ammobaculites spp., and Lenticulina spp. The presence of Pulsiphonina prima and Valvulineria scorbiculata in Biofacies B suggests an increase in runoff conditions in the basin. Fluctuating trophic conditions prevailed between ∼54–50 Ma. It is evidenced by alternating Biofacies C (endobenthic and chiloguembelinids of eutrophic conditions) and Biofacies D (epibenthic and acarininids of oligotrophic conditions). Biofacies E is dominated by deep-dwelling parasubbotinids, indicating an increase in bathymetry, possibly corresponding to the Early Eocene Climatic Optimum (∼49 Ma).


2008 ◽  
Vol 267 (3-4) ◽  
pp. 666-679 ◽  
Author(s):  
G SUAN ◽  
B PITTET ◽  
I BOUR ◽  
E MATTIOLI ◽  
L DUARTE ◽  
...  

2018 ◽  
Vol 37 (1) ◽  
pp. 317-339 ◽  
Author(s):  
Joost Frieling ◽  
Emiel P. Huurdeman ◽  
Charlotte C. M. Rem ◽  
Timme H. Donders ◽  
Jörg Pross ◽  
...  

Abstract. Detailed, stratigraphically well-constrained environmental reconstructions are available for Paleocene and Eocene strata at a range of sites in the southwest Pacific Ocean (New Zealand and East Tasman Plateau; ETP) and Integrated Ocean Discovery Program (IODP) Site U1356 in the south of the Australo-Antarctic Gulf (AAG). These reconstructions have revealed a large discrepancy between temperature proxy data and climate models in this region, suggesting a crucial error in model, proxy data or both. To resolve the origin of this discrepancy, detailed reconstructions are needed from both sides of the Tasmanian Gateway. Paleocene–Eocene sedimentary archives from the west of the Tasmanian Gateway have unfortunately remained scarce (only IODP Site U1356), and no well-dated successions are available for the northern sector of the AAG. Here we present new stratigraphic data for upper Paleocene and lower Eocene strata from the Otway Basin, southeast Australia, on the (north)west side of the Tasmanian Gateway. We analyzed sediments recovered from exploration drilling (Latrobe-1 drill core) and outcrop sampling (Point Margaret) and performed high-resolution carbon isotope geochemistry of bulk organic matter and dinoflagellate cyst (dinocyst) and pollen biostratigraphy on sediments from the regional lithostratigraphic units, including the Pebble Point Formation, Pember Mudstone and Dilwyn Formation. Pollen and dinocyst assemblages are assigned to previously established Australian pollen and dinocyst zonations and tied to available zonations for the SW Pacific. Based on our dinocyst stratigraphy and previously published planktic foraminifer biostratigraphy, the Pebble Point Formation at Point Margaret is dated to the latest Paleocene. The globally synchronous negative carbon isotope excursion that marks the Paleocene–Eocene boundary is identified within the top part of the Pember Mudstone in the Latrobe-1 borehole and at Point Margaret. However, the high abundances of the dinocyst Apectodinium prior to this negative carbon isotope excursion prohibit a direct correlation of this regional bio-event with the quasi-global Apectodinium acme at the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma). Therefore, the first occurrence of the pollen species Spinizonocolpites prominatus and the dinocyst species Florentinia reichartii are here designated as regional markers for the PETM. In the Latrobe-1 drill core, dinocyst biostratigraphy further indicates that the early Eocene (∼ 56–51 Ma) sediments are truncated by a ∼ 10 Myr long hiatus overlain by middle Eocene (∼ 40 Ma) strata. These sedimentary archives from southeast Australia may prove key in resolving the model–data discrepancy in this region, and the new stratigraphic data presented here allow for detailed comparisons between paleoclimate records on both sides of the Tasmanian Gateway.


Sign in / Sign up

Export Citation Format

Share Document