scholarly journals A New Inclusive Volcanic Risk Ranking, Part 2: Application to Latin America

2021 ◽  
Vol 9 ◽  
Author(s):  
Letícia Freitas Guimarães ◽  
Amiel Nieto-Torres ◽  
Costanza Bonadonna ◽  
Corine Frischknecht

Volcanic Risk Ranking (VRR) methods have been developed worldwide as a way to hierarchize the volcanic systems and help target strategies for risk reduction. Such hierarchization is especially important in areas characterized by a large number of active volcanoes but limited resources. This is the case of Latin America, where large populations live nearby almost 300 active volcanoes. Here we assess the volcanic systems in Latin America with at least one eruption in the last 1,000 years based on the VRR strategy presented in a companion paper that accounts for the 4 main risk factors: hazard, exposure, vulnerability and resilience. Our results reveal that, among the 123 volcanoes analyzed, Santiaguito, Tacaná and Fuego are those with the highest score in the 3-factor VRR (H×E×V), while Ecuador, Marchena and Santiago are among the systems with the lowest score. Bárcena and Pinta score zero as there is no exposure. Although vulnerability significantly contributes to the VRR score, hazard and exposure are the main factors that define the risk of Latin American volcanic systems in the proposed 3-factor VRR, while resilience contributes to its reduction in the proposed 4-factor VRR strategy. In this regard, Arenal, Copahue, Villarrica, Ubinas, Irazú and Poás are the systems with the highest number of risk reduction strategies in place. Atitlán, Almolonga and Tecuamburro are the volcanic systems with the highest score in the 4-factor VRR [(H×E×V)/(Res+1)], combining moderate hazard, exposure and vulnerability and low resilience; Bárcena, Pinta, Ecuador, Marchena and Santiago receive the lowest scores due to no or low exposure. Santiaguito, Tacaná, El Chichón and Ceboruco are characterized by high scores in the 3-factor VRR and also stand out as some of those with few risk reduction strategies implemented; thus they have intermediate to high scores also in the 4-factor VRR. Recognizing that hazard is difficult to mitigate and reducing exposure may depend on hardly feasible relocation of infrastructure and already established communities, we emphasize that measures to reduce vulnerability and increase resilience should be promoted (e.g., creating redundancy/accessibility to infrastructure, carrying out risk assessment studies, implementing early warning systems, developing emergency plans and promoting educational activities).

2021 ◽  
Vol 9 ◽  
Author(s):  
Amiel Nieto-Torres ◽  
Leticia Freitas Guimarães ◽  
Costanza Bonadonna ◽  
Corine Frischknecht

The ever-increasing population living near active volcanoes highlights the need for the implementation of effective risk reduction measures to save lives and reduce the impact of volcanic unrest and eruptions. To help identify volcanic systems associated with potential high risk and prioritize risk reduction strategies, we introduce a new Volcanic Risk Ranking (VRR) methodology that integrates hazard, exposure, and vulnerability as factors that increase risk, and resilience as a factor that reduces risk. Here we present a description of the methodology using Mexican volcanoes as a case study, while a regional application to Latin American volcanoes is presented in a companion paper (Guimarães et al., submitted). With respect to existing strategies, the proposed VRR methodology expands the parameters associated with hazard and exposure and includes the analysis of 4 dimensions of vulnerability (physical, systemic, social, economic) and of resilience. In particular, we propose 41 parameters to be analyzed, including 9 hazard parameters, 9 exposure parameters, 10 vulnerability parameters and 13 resilience parameters. Since the number of parameters evaluated for each risk factor is different, they are normalized to have the same weight based on dedicated sensitivity analyses. In order to best illustrate the methodology, the proposed VRR is here applied to 13 Mexican volcanoes and compared with other approaches. We found that the volcanoes associated with the highest combination of hazard, exposure and vulnerability (3-factor VRR) for this geographic area are Tacaná and El Chichón regardless of the analyzed time window of eruption occurrence (i.e., <1 and <10 ka). Nonetheless, the volcanoes with eruption <1 ka that require the most urgent actions as associated with no or few resilience measures in place are Michoacán-Guanajuato Volcanic Field and San Martín Tuxtla (4-factor VRR); the top volcanoes in the 4-factor VRR with eruption <10 ka are Michoacán-Guanajuato Volcanic Field and Las Cumbres.


2021 ◽  
Author(s):  
Ashim Sattar ◽  
Simon Allen ◽  
Holger Frey ◽  
Christian Huggel ◽  
Martin Mergili

<p>The presence of large and rapidly growing glacial lakes along the Himalayan Arc makes glacial lake outburst floods (GLOFs) a serious mountain hazard. While glacial lakes are mainly located in remote and unsettled mountain valleys, far-reaching GLOFs may claim lives and damage assets tens of kilometers downstream. Evaluating GLOF hazard is therefore of high importance, considering current and potential future climate-driven changes of glaciers and glacial lakes. A major concern in the Northeastern Indian Himalayan state of Sikkim is the damage potential these flood events can cause to hydropower plants and local vulnerable communities. This is particularly true for outburst floods potentially originating from the two lakes in Sikkim that are considered hazardous: the South Lhonak Lake and the Shako Cho Lake. Both lakes have been recognized in previous studies, and by local and state authorities, as being high priority sites for further monitoring and potential risk reduction measures. Recognizing the need for related risk reduction strategies to be based on robust scientific understanding, this study aims to combine remote sensing approaches with hydrodynamic flood modeling to identify key threats to lives and livelihoods.</p><p>This study also provides the first implementation of recently developed national guidelines on the management of GLOFs, where a detailed risk assessment including potential GLOF triggers, conditioning factors, and downstream impacts forms the scientific core. First results of only-water flow using HEC-RAS show that a high-potential scenario (dam breach depth = 40 m) produces flow depth and flow velocity up to 25 m and 9-12 m s<sup>-1</sup>, respectively, at Chungthang, a town located close to a major hydropower station, 62 km downstream of the lake. The fact that GLOF flow rheology is often changing as it propagates downstream, further modeling has been undertaken with r.avaflow, which can simulate the entire process chain from initial avalanche triggering, to dam erosion, and downstream flow propagation with a multi-phase modeling approach. Hence, we can evaluate the potential downstream impact in the case of a GLOF transitioning into a debris flow process. Our results provide flow hydraulics including flow velocities, flow heights, and total downstream inundation. These parameters will provide important insights for risk reduction strategies, such as early warning systems and land-use planning under current and future glacial conditions.</p><p> </p>


Author(s):  
Hyunjung Ji

Risk reduction is a policy priority in governments at all levels. Building community resilience is one of the keys to reducing disaster risks. Resilience-focused risk reduction considers the wider social, political, and cultural environments of a community and emphasizes the importance of working with community members. This is in stark contrast to the previous vulnerability-focused risk management that treats disasters as unavoidable natural events and recognizes people as passive or helpless under the unavoidable disasters. Community resilience is a critical concept in identifying visions and directions for risk reduction strategies. Community resilience has two major qualities: inherent community conditions (inherent resilience) and the community’s adaptive capacity (adaptive resilience). There are at least four components that should be included in risk reduction strategies to enhance both inherent and adaptive community resilience: risk governance, community-based risk reduction policies, non-governmental disaster entrepreneurs, and people-centered risk reduction measures. Risk governance is required to bridge the gap between national policies and local practices, scientific knowledge of natural hazards and locally accumulated knowledge, and national assistance and local actions. Community-based risk reduction policies should complement national disaster policies to reflect locally specific patterns of hazard, exposure, and resilience that are otherwise ignored in policy design process at the international and national levels. Risk reduction strategies should also encourage emergence of non-governmental entrepreneurs who can contribute to the speed and success of community relief and recovery following a disaster by resolving the immediate needs of the affected communities and transitioning people toward autonomy and self-reliance. Finally, risk reduction strategies should include people-centered policy measures that are designed to change the awareness, attitudes, and behaviors of people so that they are more prepared when facing a disaster.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 934
Author(s):  
Andy McEvoy ◽  
Becky K. Kerns ◽  
John B. Kim

Optimized wildfire risk reduction strategies are generally not resilient in the event of unanticipated, or very rare events, presenting a hazard in risk assessments which otherwise rely on actuarial, mean-based statistics to characterize risk. This hazard of actuarial approaches to wildfire risk is perhaps particularly evident for infrequent fire regimes such as those in the temperate forests west of the Cascade Range crest in Oregon and Washington, USA (“Westside”), where fire return intervals often exceed 200 years but where fires can be extremely intense and devastating. In this study, we used wildfire simulations and building location data to evaluate community wildfire exposure and identify plausible disasters that are not based on typical mean-based statistical approaches. We compared the location and magnitude of simulated disasters to historical disasters (1984–2020) in order to characterize plausible surprises which could inform future wildfire risk reduction planning. Results indicate that nearly half of communities are vulnerable to a future disaster, that the magnitude of plausible disasters exceeds any recent historical events, and that ignitions on private land are most likely to result in very high community exposure. Our methods, in combination with more typical actuarial characterizations, provide a way to support investment in and communication with communities exposed to low-probability, high-consequence wildfires.


2010 ◽  
Vol 28 (10) ◽  
pp. 1070-1077 ◽  
Author(s):  
Maria Tria Tirona ◽  
Rajesh Sehgal ◽  
Oscar Ballester

2021 ◽  
Vol 17 (1) ◽  
pp. 39-54
Author(s):  
Josiah D. Strawser, MD ◽  
Lauren Block, MD, MPH

Objective: To explore the impact of the New York State Prescription Drug Monitoring Program (IStop) on the self-reported management of patients with chronic pain by primary care providers.Design: Mixed-methods study with survey collection and semistructured interviews.Setting: Multiple academic hospitals in New York.Participants: One hundred and thirty-six primary care providers (residents, fellows, attendings, and nurse practitioners) for survey collection, and eight primary care clinicians (residents, attending, and pharmacist) for interviews. Interventions: Introduction of IStop.Main outcome measure(s): Change in usage of four risk reduction strategies (pain contracts, urine tests, monthly visits, and co-management) as reported by primary care providers for patients with chronic pain.Results: After the introduction of IStop, 25 percent (32/128) of providers increased usage of monthly visits, 28 percent (36/128) of providers increased usage of pain management co-management with other healthcare providers, and 46 percent (60/129) of providers increased usage of at least one of four risk reduction strategies. Residents indicated much higher rates of change in risk reduction strategies due to IStop usage; increasing in the use of monthly visits (32 vs. 13 percent, p = 0.02) and co-management (36 vs. 13 percent, p = 0.01) occurred at a much higher rate in residents than attending physicians. Interview themes revealed an emphasis on finding opioid alternatives when possible, the need for frequent patient visits in effective pain management, and the importance of communication between the patient and provider to protect the relationship in chronic pain management.Conclusions: After the introduction of IStop, primary care providers have increased usage of risk reduction strategies in the care of chronic pain patients.


2018 ◽  
Vol 12 (S2) ◽  
Author(s):  
Erik C. Berchum ◽  
William Mobley ◽  
Sebastiaan N. Jonkman ◽  
Jos S. Timmermans ◽  
Jan H. Kwakkel ◽  
...  

2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Tshepo Moshodi ◽  
Christo Coetzee ◽  
Kristel Fourie

The Merafong Local Municipality (MLM) has historically suffered financial and human losses because of the presence of dolomite and the consequent formation of sinkholes. There is a great need for the MLM to address the risk posed by sinkholes to ensure the continued safety of communities. However, as the risk is so pervasive, the MLM needs to coordinate their risk reduction strategies with a wide array of stakeholders in the municipality. Efficient stakeholder management is thus crucial if the sinkhole risk is to be addressed appropriately. This article reviews the current status of stakeholder management in the MLM as it pertains to the formulation of a holistic sinkhole risk reduction strategy. Findings indicate that there are serious deficiencies in the MLM’s stakeholder management relating to key risk management processes such as community involvement in risk management structures, disaster risk assessment, training and awareness, and early warning and response. Improved stakeholder management could be characterised by the following factors: improved two-way communication between the municipality and community stakeholders, fostering a relationship based upon trust and equality amongst stakeholders, participation by a wide array of stakeholder groups affected by the sinkhole risk and a mutual commitment by all stakeholders to address the risk. These factors could contribute to enhancing current and future sinkhole risk reduction strategies.


Sign in / Sign up

Export Citation Format

Share Document