scholarly journals Implementation of a Fault-Tolerant AC/DC Converter for Permanent Magnet Synchronous Motor Drive Systems

2021 ◽  
Vol 2 ◽  
Author(s):  
Tian-Hua Liu ◽  
Yu-Wei Wang

Fault tolerant drive systems have played an increasing role for electric vehicles in order to improve reliability, availability, and to reduce maintenance. For safety reason, a fault-tolerant drive system, which includes some redundant devices and a traditional motor drive system, has been developed. This fault-tolerant system executes real-time fault detection, diagnosis, isolation, and control to make the fault-tolerant drive system operate normally even though some faults have happened. In this paper, an AC/DC converter faults, which includes a single-phase full-bridge rectifier diode fault, a three-phase full-bridge rectifier diode fault, and a DC-link capacitor fault are investigated. The fault-tolerant processes include fault detection, diagnosis, isolation, and control to improve the reliability of the drive system and reduce the disturbances during faulty interval. A digital signal processor, manufactured by Texas Instruments, type TMS320F2808, is used as a control center to achieve the fault tolerant processes. Experimental results validate theoretical analysis to demonstrate the correctness and feasibility of the proposed methods. The proposed method can be easily implemented in industrial products due to its simplicity.

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3593 ◽  
Author(s):  
Liu ◽  
Syahril Mubarok ◽  
Ridwan ◽  
Suwarno

This paper proposes a speed-loop periodic controller design for fault-tolerant surface permanent magnet synchronous motor (SPMSM) drive systems. Faulty conditions, including an open insulated-gate bipolar transistor (IGBT), a short-circuited IGBT, or a Hall-effect current sensor fault are investigated. The fault-tolerant SPMSM drive system using a speed-loop periodic controller has better performance than when using a speed-loop PI controller under normal or faulty conditions. The superiority of the proposed speed-loop-periodic-controller-based SPMSM drive system includes faster transient responses and better load disturbance responses. A detailed design of the speed-loop periodic controller and its related fault-tolerant method, including fault detection, diagnosis, isolation, and control are included. In addition, a current estimator is also proposed to estimate the stator current. When the Hall-effect current sensor is faulty, the estimated current is used to replace the current of the faulty sensor. A 32-bit digital signal processor, type TMS-320F-2808, is used to execute the fault-tolerant method and speed-loop periodic control. Measured experimental results validate the theoretical analysis. The proposed implementation of a fault-tolerant SPMSM drive system and speed-loop periodic controller design can be easily applied in industry due to its simplicity.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3672
Author(s):  
Tian-Hua Liu ◽  
Muhammad Syahril Mubarok ◽  
Yu-Hao Xu

Field-excited flux-switching motor drive systems have become more and more popular due to their robustness and lack of need for a permanent magnet. Three different types of predictive controllers, including a single-step predictive speed controller, a multi-step predictive speed controller, and a predictive current controller are proposed for sensorless flux-switching motor drive systems in this paper. By using a 1 kHz high-frequency sinusoidal voltage injected into the field winding and by measuring the a-b-c armature currents in the stator, an estimated rotor position that is near ± 2 electrical degrees is developed. To improve the dynamic responses of the field-excited flux-switching motor drive system, predictive controllers are employed. Experimental results demonstrate the proposed predictive controllers have better performance than PI controllers, including transient, load disturbance, and tracking responses. In addition, the adjustable speed range of the proposed drive system is from 4 r/min to 1500 r/min. A digital signal processor, TMS-320F-2808, is used as a control center to carry out the rotor position estimation and the predictive control algorithms. Measured results can validate the theoretical analysis to illustrate the practicability and correctness of the proposed method.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3288
Author(s):  
Wang ◽  
Xu ◽  
Zou

At present, pulse width modulation (PWM) technique is widely applied in motor drive systems. However, it may cause some unexpected effects: Bearing currents, overvoltage, power losses and unwanted noise. In some industrial cases, LC filters are always equipped in motor drive systems to suppress those unexpected effects. In order to improve the reliability and safety of the drive system, fault diagnostic strategies for power switches should be utilized as other drive systems without LC filters. In the literature, some open-switch diagnostic approaches are based on the observers derived from the mathematical models. However, the models are changed by the LC filters. Therefore, the existing approaches, based on the observers are failed, due to the change of the models. This study proposes an open-switch diagnostic method for permanent magnet synchronous motor (PMSM) drive equipped with LC Filter. The novelty of the proposed method is that the model of the LC filter is considered. Therefore, open-switch faults can be detected and located in the drive systems with LC filters. The switching function model of the drive system is analyzed at first. Then a sliding mode observer (SMO) considering the model of the filter is proposed to estimate the filter voltages and other state variables. Consequently, the faults can be detected and located through the residual errors between the expected and estimated filter voltages. This approach features simplicity. Furthermore, any extra sensors are not necessary. Experimental results on a 750-W PMSM drive system with an LC filter proved the feasibility of the proposed method.


Author(s):  
Bhim Singh ◽  
B. P. Singh ◽  
Sanjeet Dwivedi

This paper presents a Digital Signal Processor (DSP) based implementation of Hybrid of Fuzzy Logic Controller (FLC) and Proportional-Integral (PI) speed controller for Direct Torque Controlled (DTC) Permanent Magnet Synchronous Motor (PMSM) drive. The fuzzy membership function is used for hybrid control of these two FLC and PI speed controllers in such a way that at the time of dynamic conditions such as starting, the degree of belonging for FLC speed controller is higher than the PI speed controller and near set point the degree of belonging of PI controller is having higher weightage. The simulation model of the drive system is developed in MATLAB environment with simulink, PSB and FLC toolboxes to analyze the performance of the PMSM drive system. This hybrid speed controller is found suitable for DTC based PMSM drive to maintain the high level of performance while maintaining the excellent response at the time of starting, speed reversal, load perturbation and steady-state operating condition of the drive.


Sign in / Sign up

Export Citation Format

Share Document