scholarly journals Power-to-Syngas: A Parareal Optimal Control Approach

2021 ◽  
Vol 9 ◽  
Author(s):  
Andrea Maggi ◽  
Dominik Garmatter ◽  
Sebastian Sager ◽  
Martin Stoll ◽  
Kai Sundmacher

A chemical plant layout for the production of syngas from renewable power, H2O and biogas, is presented to ensure a steady productivity of syngas with a constant H2-to-CO ratio under time-dependent electricity provision. An electrolyzer supplies H2 to the reverse water-gas shift reactor. The system compensates for a drop in electricity supply by gradually operating a tri-reforming reactor, fed with pure O2 directly from the electrolyzer or from an intermediate generic buffering device. After the introduction of modeling assumptions and governing equations, suitable reactor parameters are identified. Finally, two optimal control problems are investigated, where computationally expensive model evaluations are lifted viaparareal and necessary objective derivatives are calculated via the continuous adjoint method. For the first time, modeling, simulation, and optimal control are applied to a combination of the reverse water-gas shift and tri-reforming reactor, exploring a promising pathway in the conversion of renewable power into chemicals.

Author(s):  
Daiya Kobayashi ◽  
Hirokazu Kobayashi ◽  
Kohei Kusada ◽  
Tomokazu Yamamoto ◽  
Takaaki Toriyama ◽  
...  

We report PtW solid-solution alloy nanoparticles (NPs) as a reverse water-gas shift (RWGS) reaction catalyst for the first time. Atomic-level alloying of Pt and W significantly enhanced the RWGS reaction activity of Pt NPs.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 741
Author(s):  
Agata Łamacz ◽  
Paulina Jagódka ◽  
Michalina Stawowy ◽  
Krzysztof Matus

In this work, the carbon nanotubes (CNT)-supported nanosized, well-dispersed, CeZrO2 and Ni-CeZrO2 catalysts were obtained and tested for the first time in the reaction of methane dry reforming (DRM). The performance of the hybrid materials was compared with the performance of Ni/CNT catalyst. The mechanism of the DRM reaction and the occurrence of reverse water gas shift reaction (RWGS) and CO2 deoxidation were discussed in terms of catalysts composition. The contribution of RWGS and CO2 deoxidation in the DRM process, demonstrating an increased CO2 consumption when compared to CH4, and H2/CO < 1, varied depending on the catalyst composition, was also studied.


1997 ◽  
Author(s):  
Robert Zubrin ◽  
Mitchell Clapp ◽  
Tom Meyer ◽  
Robert Zubrin ◽  
Mitchell Clapp ◽  
...  

Reactions ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 130-146
Author(s):  
Yali Yao ◽  
Baraka Celestin Sempuga ◽  
Xinying Liu ◽  
Diane Hildebrandt

In order to explore co-production alternatives, a once-through process for CO2 hydrogenation to chemicals and liquid fuels was investigated experimentally. In this approach, two different catalysts were considered; the first was a Cu-based catalyst that hydrogenates CO2 to methanol and CO and the second a Fisher–Tropsch (FT) Co-based catalyst. The two catalysts were loaded into different reactors and were initially operated separately. The experimental results show that: (1) the Cu catalyst was very active in both the methanol synthesis and reverse-water gas shift (R-WGS) reactions and these two reactions were restricted by thermodynamic equilibrium; this was also supported by an Aspen plus simulation of an (equilibrium) Gibbs reactor. The Aspen simulation results also indicated that the reactor can be operated adiabatically under certain conditions, given that the methanol reaction is exothermic and R-WGS is endothermic. (2) the FT catalyst produced mainly CH4 and short chain saturated hydrocarbons when the feed was CO2/H2. When the two reactors were coupled in series and the presence of CO in the tail gas from the first reactor (loaded with Cu catalyst) significantly improves the FT product selectivity toward higher carbon hydrocarbons in the second reactor compared to the standalone FT reactor with only CO2/H2 in the feed.


2021 ◽  
Author(s):  
Jun-Ichiro Makiura ◽  
Takuma Higo ◽  
Yutaro Kurosawa ◽  
Kota Murakami ◽  
Shuhei Ogo ◽  
...  

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.


2021 ◽  
pp. 149925
Author(s):  
Hai-Yan Su ◽  
Keju Sun ◽  
Jin-Xun Liu ◽  
Xiufang Ma ◽  
Minzhen Jian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document