scholarly journals Complementary Contribution of Fungi and Bacteria to Lignocellulose Digestion in the Food Stored by a Neotropical Higher Termite

2021 ◽  
Vol 9 ◽  
Author(s):  
Edimar A. Moreira ◽  
Gabriela F. Persinoti ◽  
Letícia R. Menezes ◽  
Douglas A. A. Paixão ◽  
Thabata M. Alvarez ◽  
...  

Lignocellulose digestion in termites is achieved through the functional synergy between gut symbionts and host enzymes. However, some species have evolved additional associations with nest microorganisms that collaborate in the decomposition of plant biomass. In a previous study, we determined that plant material packed with feces inside the nests of Cornitermes cumulans (Syntermitinae) harbors a distinct microbial assemblage. These food nodules also showed a high hemicellulolytic activity, possibly acting as an external place for complementary lignocellulose digestion. In this study, we used a combination of ITS sequence analysis, metagenomics, and metatranscriptomics to investigate the presence and differential expression of genes coding for carbohydrate-active enzymes (CAZy) in the food nodules and the gut of workers and soldiers. Our results confirm that food nodules express a distinct set of CAZy genes suggesting that stored plant material is initially decomposed by enzymes that target the lignin and complex polysaccharides from fungi and bacteria before the passage through the gut, where it is further targeted by a complementary set of cellulases, xylanases, and esterases produced by the gut microbiota and the termite host. We also showed that the expression of CAZy transcripts associated to endoglucanases and xylanases was higher in the gut of termites than in the food nodules. An additional finding in this study was the presence of fungi in the termite gut that expressed CAZy genes. This study highlights the importance of externalization of digestion by nest microbes and provides new evidence of complementary digestion in the context of higher termite evolution.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carmen P. Wong ◽  
Urszula T. Iwaniec ◽  
Russell T. Turner

AbstractSixteen-week-old female C57BL/6J mice were sacrificed aboard the International Space Station after 37 days of flight (RR-1 mission) and frozen carcasses returned to Earth. RNA was isolated from interscapular brown adipose tissue (BAT) and gonadal white adipose tissue (WAT). Spaceflight resulted in differential expression of genes in BAT consistent with increased non-shivering thermogenesis and differential expression of genes in WAT consistent with increased glucose uptake and metabolism, adipogenesis, and β-oxidation.


2013 ◽  
Vol 49 (7) ◽  
pp. 707-716 ◽  
Author(s):  
N. Yu. Oparina ◽  
A. V. Snezhkina ◽  
A. F. Sadritdinova ◽  
V. A. Veselovskii ◽  
A. A. Dmitriev ◽  
...  

PLoS Genetics ◽  
2014 ◽  
Vol 10 (11) ◽  
pp. e1004773 ◽  
Author(s):  
Magali Boutard ◽  
Tristan Cerisy ◽  
Pierre-Yves Nogue ◽  
Adriana Alberti ◽  
Jean Weissenbach ◽  
...  

2021 ◽  
Author(s):  
Li Liu ◽  
Gongxiu He ◽  
Xu Wang ◽  
Dangquan Zhang

Abstract Background: Phoebe bournei is a potential medicinal plant whose essential oil (EO) from leaves has potential inhibitory activities against some bacterium, tumor, and has a certain potential for hypoglycemic activity. Fertilization is a common and effective method to increase plant biomass, which can increase the raw material of essential oil, but has a certain impact on the composition and biological activity of plant essential oil. Results: The main components are sesquiterpenes in the essential oils from leaves and twigs. The yield of the essential oils and the content of their main components can be modulated by compost and compound fertilizer, to different degrees, and minor differences were registered among the categories of the components in essential oils. However, changes were strongly mirrored in some main components of essential oils. The content of the primary (+) - calarene in the leaf EO were strongly increased by compost, but the opposite happened by compound fertilizer. On the contrary, the effect of compound fertilizer was more significant on the main components of twig essential oil than compost. The transcriptome sequencing results of P. bournei showed that the total number of DEGs in twigs and leaves treated with compost were significantly more than that with compound fertilizer. No change was found in the expression of genes regulating principal components. However, the expression of several key genes regulating the upstream substrates for the synthesis of the sesquiterpenes was significantly changed: the expression of two key speed limiting enzymes genes (DXS and HMGR) and two important branch-point enzyme genes (FPPS and GGPPS) was significantly down regulated, while the expression of gene (HMGS) was significantly up-regulated.Conclusion: The expression levels of genes (DXS2, HMGR, FPPS and GGPPS) were significantly down regulated in leaves treated with compost, resulting in the changes of the yield and main components of the leaf essential oil. The effect of compost was more significant on the synthesis of the essential oil from P. bournei leaves than that of compound fertilizer.


2000 ◽  
Vol 106 (3) ◽  
pp. 639
Author(s):  
Joshua A. Greenwald ◽  
Babak J. Mehrara ◽  
Jason A. Spector ◽  
Peter J. Fagenholz ◽  
Pierre B. Saadeh ◽  
...  

2014 ◽  
Vol 31 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Hongwei Wang ◽  
Qiang Sun ◽  
Wenyuan Zhao ◽  
Lishuang Qi ◽  
Yunyan Gu ◽  
...  

10.1038/14353 ◽  
1999 ◽  
Vol 23 (S3) ◽  
pp. 59-59
Author(s):  
Suxing Liu ◽  
Qun Wu ◽  
Paul Kirschmeier ◽  
Terri McClanahan ◽  
Johnathan Greene ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document