scholarly journals Paleoecological Investigation of Vegetation, Climate and Fire History in, and Adjacent to, Kootenay National Park, Southeastern British Columbia, Canada

2022 ◽  
Vol 9 ◽  
Author(s):  
Thomas J. Rodengen ◽  
Marlow G. Pellatt ◽  
Karen E. Kohfeld

Paleoecological investigation of two montane lakes in the Kootenay region of southeast British Columbia, Canada, reveal changes in vegetation in response to climate and fire throughout the Holocene. Pollen, charcoal, and lake sediment carbon accumulation rate analyses show seven distinct zones at Marion Lake, presently in the subalpine Engelmann Spruce-Subalpine Fir (ESSF) biogeoclimatic (BEC) zone of Kootenay Valley, British Columbia. Comparison of these records to nearby Dog Lake of Kootenay National Park of Canada in the Montane Spruce (MS) BEC zone of Kootenay Valley, British Columbia reveals unique responses of ecosystems in topographically complex regions. The two most dramatic shifts in vegetation at Marion Lake occur firstly in the early Holocene/late Pleistocene in ML Zone 3 (11,010–10,180 cal. yr. B.P.) possibly reflecting Younger Dryas Chronozone cooling followed by early Holocene xerothermic warming noted by the increased presence of the dry adapted conifer, Douglas-fir (Pseudotsuga menziesii) and increasing fire frequency. The second most prominent change occurred at the transition from ML Zone 5 through 6a (∼2,500 cal. yr. B.P.). This zone transitions from a warmer to a cooler/wetter climate as indicated by the increase in western hemlock (Tsuga heterophylla) and subsequent drop in fire frequency. The overall cooling trend and reduction in fire frequency appears to have occurred ∼700 years later than at Dog Lake (∼43 km to the south and 80 m lower in elevation), resulting in a closed montane spruce forest, whereas Marion Lake developed into a subalpine ecosystem. The temporal and ecological differences between the two study sites likely reflects the particular climate threshold needed to move these ecosystems from developed forests to subalpine conditions, as well as local site climate and fire conditions. These paleoecological records indicate future warming may result in the MS transitioning into an Interior Douglas Fir (IDF) dominated landscape, while the ESSF may become more forested, similar to the modern MS, or develop into a grassland-like landscape dependent on fire frequency. These results indicate that climate and disturbance over a regional area can dictate very different localized vegetative states. Local management implications of these dynamic landscapes will need to understand how ecosystems respond to climate and disturbance at the local or ecosystem/habitat scale.

2019 ◽  
Vol 92 (1) ◽  
pp. 232-245 ◽  
Author(s):  
Terri Lacourse ◽  
Kyle W. Beer ◽  
Kira B. Craig ◽  
Dante Canil

ABSTRACTPeatland development and carbon accumulation on the Pacific coast of Canada have received little attention in paleoecological studies, despite wetlands being common landscape features. Here, we present a multi–proxy paleoenvironmental study of an ombrotrophic bog in coastal British Columbia. Following decreases in relative sea level, the wetland was isolated from marine waters by 13,300 cal yr BP. Peat composition, non-pollen palynomorph, and C and N analyses demonstrate terrestrialization from an oligotrophic lake to a marsh by 11,600 cal yr BP, followed by development of a poor fen, and then a drier ombrotrophic bog by 8700 cal yr BP. Maximum carbon accumulation occurred during the early Holocene fen stage, when seasonal differences in insolation were amplified. This highlights the importance of seasonality in constraining peatland carbon sequestration by enhancing productivity during summer and reducing decomposition during winter. Pollen analysis shows that Pinus contorta dominated regional forests by 14,000 cal yr BP. Warm and relatively dry summers in the early Holocene allowed Pseudotsuga menziesii to dominate lowland forests 11,200–7000 cal yr BP. Tsuga heterophylla and P. menziesii formed coniferous forest in the mid- and late Holocene. Tephra matching the mid-Holocene Glacier Peak–Dusty Creek assemblage provides evidence of its most northwesterly occurrence to date.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 48
Author(s):  
Kira M. Hoffman ◽  
Sara B. Wickham ◽  
William S. McInnes ◽  
Brian M. Starzomski

Fire exclusion and suppression has altered the composition and structure of Garry oak and associated ecosystems in British Columbia. The absence of frequent low severity ground fires has been one of the main contributors to dense patches of non-native grasses, shrubs, and encroaching Douglas-fir trees in historical Garry oak dominated meadows. This case study uses remote sensing and dendrochronology to reconstruct the stand dynamics and long-term fire history of a Garry oak meadow situated within Helliwell Provincial Park located on Hornby Island, British Columbia. The Garry oak habitat in Helliwell Park has decreased by 50% since 1950 due to conifer encroachment. Lower densities and mortalities of Garry oak trees were associated with the presence of overstory Douglas-fir trees. To slow conifer encroachment into the remaining Garry oak meadows, we recommend that mechanical thinning of Douglas-fir be followed by a prescribed burning program. Reintroducing fire to Garry oak ecosystems can restore and maintain populations of plants, mammals, and insects that rely on these fire resilient habitats.


1983 ◽  
Vol 20 (5) ◽  
pp. 873-885 ◽  
Author(s):  
Linda E. Heusser

Varved, black clayey silts deposited in the marine waters of Saanich Inlet yield unusually abundant and diverse pollen assemblages derived from the coastal Douglas-fir (Pseudotsuga) and western hemlock (Tsuga heterophylla) forests of southwestern British Columbia. The 12 000 year palynological record chronicles the development of vegetation since ice left Saanich Inlet: the succession of pine (Pinus contorta) and alder (Alnus rubra) woodlands by forests characterized by Douglas-fir and oak (Quercus) and later by western hemlock and red cedar (Thuja plicata). Rapid deposition of annual layers of pollen, charcoal, and other terrigenous particles provides detailed evidence of changes in land use during the past few hundred years: settlement, logging, farming, and urbanization. Vegetational and climatic changes inferred from pollen spectra in the marine sediments of Saanich Inlet compare favorably with changes inferred from correlative pollen assemblages previously described from adjacent parts of Vancouver Island and the Fraser River valley.


1990 ◽  
Vol 68 (8) ◽  
pp. 1763-1767 ◽  
Author(s):  
Alan M. Masters

Time-since-fire distribution analysis is used to estimate forest fire frequency for the 1400 km2 Kootenay National Park, British Columbia, located on the west slope of the Rocky Mountains. The time-since-fire distribution indicates three periods of different fire frequency: 1988 to 1928, 1928 to 1788, and before 1788. The fire cycle for the park was > 2700 years for 1988 to 1928, 130 years between 1928 and 1788, and 60 years between 1778 and 1508. Longer fire cycles after 1788 and 1928 may be due, respectively, to cool climate associated with the Little Ice Age and a recent period of higher precipitation. Contrary to some fire history investigations in the region, neither a fire suppression policy since park establishment in 1919, nor the completion of the Windermere Highway through the park in 1923 appear to have changed the fire frequency from levels during pre-European occupation. Spatial partitioning of the time-since-fire distribution was unsuccessful. No relationship was found between elevation or aspect and fire frequency. Key words: fire cycle, Rocky Mountains, climate change.


1987 ◽  
Vol 17 (7) ◽  
pp. 582-587 ◽  
Author(s):  
Donald C. Pitcher

The relationship between historical fires and age structure was examined on three plots in red fir (Abiesmagnifica var. shastensis Lemm.) forests within Sequoia National Park, California, U.S.A. All trees greater than 0.1 m in height were mapped and aged. Fire history was determined from 16 fire-scar sections. Red fir trees are more shade tolerant, longer lived, larger, and slower growing than western white pine (Pinusmonticola Dougl.) on the plots. No fires have occurred since 1886, but prior to that time the average fire-free interval was 65 years. Most of the trees on two of the plots originated after fires, but on the third plot red fir regeneration was delayed for at least 60 years following the last fire. Structural differences between the plots were linked to variations in fire behavior. The decrease in fire frequencies in this century may have led to a decrease in red fir establishment. Excluding the most recent period, the forest age structure is in something of a steady state that approximates a negative exponential age-class distribution.


1989 ◽  
Vol 26 (9) ◽  
pp. 1811-1825 ◽  
Author(s):  
Rolf W. Mathewes ◽  
Miriam King

Chilhil, Phair, Fishblue, and Horseshoe lakes in the southern interior of British Columbia were cored and analyzed for pollen. Phair Lake was also examined for plant macrofossils and aquatic molluscs. Two dated volcanic tephras (Mazama and Bridge River) are present in three of the four lakes and, together with radiocarbon dates, provide an absolute chronology for pollen-influx calculations and stratigraphic correlation. Abrupt changes in sediment type at Phair Lake about 5650 and 2000 years ago correlate with Neoglacial advances near the coast–interior transition. Pollen changes suggestive of moister conditions and the presence of an aquatic mollusc (Valvata sincera helicoidea) at Phair and Chilhil lakes are consistent with the Neoglacial evidence of cooler and wetter conditions after about 2400 years ago. The driest part of the Holocene was the early, pre-Mazama (ca. 6600–6800 years ago) interval, when the vegetation was more open and herb rich and the lake levels were lower than at present. Wetter climatic conditions appear in post-Mazama time, indicated by regional increases in the pollen of Tsuga heterophylla and other coastal and subalpine trees. Pollen-influx values for the Interior Douglas-fir Zone are broadly consistent at all sites, with values of < 2000 –8000 grains cm−2 year−1. Douglas-fir (Pseudotsuga menziesii) has been an important forest species in the study region throughout the Holocene.


2015 ◽  
Vol 24 (4) ◽  
pp. 534 ◽  
Author(s):  
Tim S. Doherty ◽  
Robert A. Davis ◽  
Eddie J. B. van Etten ◽  
Neil Collier ◽  
Josef Krawiec

Fire plays a strong role in structuring fauna communities and the habitat available to them in fire-prone regions. Human-mediated increases in fire frequency and intensity threaten many animal species and understanding how these species respond to fire history and its associated effect on vegetation is essential to effective biodiversity management. We used a shrubland mammal and reptile community in semiarid south-western Australia as a model to investigate interactions between fire history, habitat structure and fauna habitat use. Of the 15 species analysed, five were most abundant in recently burnt habitat (8–13 years since last fire), four were most abundant in long unburnt areas (25–50 years) and six showed no response to fire history. Fauna responses to fire history were divergent both within and across taxonomic groups. Fire management that homogenises large areas of habitat through either fire exclusion or frequent burning may threaten species due to these diverse requirements, so careful management of fire may be needed to maximise habitat suitability across the landscape. When establishing fire management plans, we recommend that land managers exercise caution in adopting species-specific information from different locations and broad vegetation types. Information on animal responses to fire is best gained through experimental and adaptive management approaches at the local level.


Author(s):  
Dennis Knight ◽  
William Romme

Fire is now recognized as a major ecosystem process and Yellowstone National Park has recently implemented a fire management plan that permits lightning fires to burn without interference under certain conditions. To predict the kinds of wildfires we can now expect in the Park, and to evaluate the effectiveness of this plan in restoring fire to the Yellowstone ecosystem, it is important to know the natural frequency and size of wildfires under pristine conditions. This study, which began in 1977 and will be completed in June 1979, has the following objectives: (1) to determine the incidence and size of major fires during the last 300-400 years on the 100-km2 Little Firehole River watershed, an area dominated by extensive lodgepole pine and some spruce-fir forests; (2) to determine average fire frequency, i.e., the time interval between successive major fires on any particular site; and (3) to determine the relationships between stand age or successional stage and fuel accumulation or the probability of fire.


Sign in / Sign up

Export Citation Format

Share Document