scholarly journals Recent Carbon Storage and Burial Exceed Historic Rates in the San Juan Bay Estuary Peri-Urban Mangrove Forests (Puerto Rico, United States)

2021 ◽  
Vol 4 ◽  
Author(s):  
Cathleen Wigand ◽  
Meagan Eagle ◽  
Benjamin L. Branoff ◽  
Stephen Balogh ◽  
Kenneth M. Miller ◽  
...  

Mangroves sequester significant quantities of organic carbon (C) because of high rates of burial in the soil and storage in biomass. We estimated mangrove forest C storage and accumulation rates in aboveground and belowground components among five sites along an urbanization gradient in the San Juan Bay Estuary, Puerto Rico. Sites included the highly urbanized and clogged Caño Martin Peña in the western half of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part. Radiometrically dated cores were used to determine sediment accretion and soil C storage and burial rates. Measurements of tree dendrometers coupled with allometric equations were used to estimate aboveground biomass. Estuary-wide mangrove forest C storage and accumulation rates were estimated using interpolation methods and coastal vegetation cover data. In recent decades (1970–2016), the highly urbanized Martin Peña East (MPE) site with low flushing had the highest C storage and burial rates among sites. The MPE soil carbon burial rate was over twice as great as global estimates. Mangrove forest C burial rates in recent decades were significantly greater than historic decades (1930–1970) at Caño Martin Peña and Piñones. Although MPE and Piñones had similarly low flushing, the landscape settings (clogged canal vs forest reserve) and urbanization (high vs low) were different. Apparently, not only urbanization, but site-specific flushing patterns, landscape setting, and soil fertility affected soil C storage and burial rates. There was no difference in C burial rates between historic and recent decades at the San José and La Torrecilla lagoons. Mangrove forests had soil C burial rates ranging from 88 g m–2 y–1 at the San José lagoon to 469 g m–2 y–1 at the MPE in recent decades. Watershed anthropogenic CO2 emissions (1.56 million Mg C y–1) far exceeded the annual mangrove forest C storage rates (aboveground biomass plus soils: 17,713 Mg C y–1). A combination of maintaining healthy mangrove forests and reducing anthropogenic emissions might be necessary to mitigate greenhouse gas emissions in urban, tropical areas.

Author(s):  
Meng Na ◽  
Xiaoyang Sun ◽  
Yandong Zhang ◽  
Zhihu Sun ◽  
Johannes Rousk

AbstractSoil carbon (C) reservoirs held in forests play a significant role in the global C cycle. However, harvesting natural forests tend to lead to soil C loss, which can be countered by the establishment of plantations after clear cutting. Therefore, there is a need to determine how forest management can affect soil C sequestration. The management of stand density could provide an effective tool to control soil C sequestration, yet how stand density influences soil C remains an open question. To address this question, we investigated soil C storage in 8-year pure hybrid larch (Larix spp.) plantations with three densities (2000 trees ha−1, 3300 trees ha−1 and 4400 trees ha−1), established following the harvesting of secondary mixed natural forest. We found that soil C storage increased with higher tree density, which mainly correlated with increases of dissolved organic C as well as litter and root C input. In addition, soil respiration decreased with higher tree density during the most productive periods of warm and moist conditions. The reduced SOM decomposition suggested by lowered respiration was also corroborated with reduced levels of plant litter decomposition. The stimulated inputs and reduced exports of C from the forest floor resulted in a 40% higher soil C stock in high- compared to low-density forests within 8 years after plantation, providing effective advice for forest management to promote soil C sequestration in ecosystems.


2012 ◽  
Vol 79 (4) ◽  
pp. 1191-1199 ◽  
Author(s):  
Sarah D. Eisenlord ◽  
Zachary Freedman ◽  
Donald R. Zak ◽  
Kai Xue ◽  
Zhili He ◽  
...  

ABSTRACTFuture rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities of actinobacteria and fungi present in the forest floor using GeoChip 4.0, a high-throughput functional-gene microarray. The compositions of functional genes derived from actinobacterial and fungal communities was significantly altered by experimental nitrogen deposition, with more heterogeneity detected in both groups. Experimental N deposition significantly decreased the richness and diversity of genes involved in the depolymerization of starch (∼12%), hemicellulose (∼16%), cellulose (∼16%), chitin (∼15%), and lignin (∼16%). The decrease in richness occurred across all taxonomic groupings detected by the microarray. The compositions of genes encoding oxidoreductases, which plausibly mediate lignin decay, were responsible for much of the observed dissimilarity between actinobacterial communities under ambient and experimental N deposition. This shift in composition and decrease in richness and diversity of genes encoding enzymes that mediate the decay process has occurred in parallel with a reduction in the extent of decay and accumulation of soil organic matter. Our observations indicate that compositional changes in actinobacterial and fungal communities elicited by experimental N deposition have functional implications for the cycling and storage of carbon in forest ecosystems.


2021 ◽  
Vol 30 (1) ◽  
pp. 115-124
Author(s):  
Arafat Rahman ◽  
MS Islam ◽  
Humyra B Murshed ◽  
MJ Uddin ◽  
ASM Mohiuddin ◽  
...  

An investigation was carried out in four designated wetlands to assess soil organic carbon (SOC) storage and evaluate soil nutrients of the northeastern Sylhet basin of Bangladesh. SOC storage was the highest in the Nikli wetland (4.1 Tg), followed by Hakaluki (4.0 Tg), Hail (2.8 Tg) and Balai wetland soils (2.6 Tg) at 100 cm depths. It is found that the total soil C storage across the medium low land (MLL) and low land (LL) sites covering the four wetlands of the Sylhet basin is about 13.5Tg. C storage across the MLL and LL sites at 100 cm depths was estimated about 5.1Tg and 8.4Tg respectively. It is found that SOC storage was higher in the low land sites in contrast to medium low land sites. The soil property varies depending on land types, soil depths and spatial distributions. Among the investigated wetland soils, Hakaluki wetland stored higher amount of SOC in the deeper soil layers whereas an inverse relationship between soil depth and SOC storage was noted for rest of the wetlands. It is apprehended that SOC storage thus gradually lessening in greater magnitude due to climate change and other anthropogenic reasons. An integrated management approach should be developed to restore the SOC sink. Dhaka Univ. J. Biol. Sci. 30(1): 115-124, 2021 (January)


2019 ◽  
Vol 192 ◽  
pp. 134-143 ◽  
Author(s):  
Ileana Frasier ◽  
Alberto Quiroga ◽  
Romina Fernández ◽  
Cristian Álvarez ◽  
Florencia Gómez ◽  
...  

2007 ◽  
Vol 44 (2) ◽  
pp. 315-320 ◽  
Author(s):  
J. L. Smith ◽  
J. M. Bell ◽  
H. Bolton ◽  
V. L. Bailey

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 492 ◽  
Author(s):  
Yo-Jin Shiau ◽  
Chih-Yu Chiu

The mangrove forest provides various ecosystem services in tropical and subtropical regions. Many of these services are driven by the biogeochemical cycles of C and N, and soil is the major reservoir for these chemical elements. These cycles may be influenced by the changing climate. The high plant biomass in mangrove forests makes these forests an important sink for blue C storage. However, anaerobic soil conditions may also turn mangrove forests into an environmentally detrimental producer of greenhouse gases (such as CH4 and N2O), especially as air temperatures increase. In addition, the changing environmental factors associated with climate change may also influence the N cycles and change the patterns of N2 fixation, dissimilatory nitrate reduction to ammonium, and denitrification processes. This review summarizes the biogeochemical processes of C and N cycles in mangrove forest soils based on recently published studies, and how these processes may respond to climate change, with the aim of predicting the impacts of climate change on the mangrove forest ecosystem.


Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 894
Author(s):  
Parijat Saikia ◽  
Kushal Kumar Baruah ◽  
Satya Sundar Bhattacharya ◽  
Chandrima Choudhury

Soil organic carbon (C) management in agricultural fields can act improve soil health and productivity. However, reports on the C release pattern and the interactive effects of plant physiological parameters on soil C storage from subtropical regions of the world where rice is cultivated as a dominant food crop are inadequate. The interactions between plant metabolism, soil C storage, and organic-based nutrient management schemes have been little studied. Hence, a study was undertaken in rainfed winter rice to evaluate the effects of different levels of organics (crop residue (CR) and farmyard manure (FYM)) along with inorganic (NPK) inputs in an alluvial soil. The experiment was conducted in a typical humid subtropical climate in north-eastern India. The CR of the preceding rice crop (pre-monsoon) and cow dung based FYM were used as organic inputs for monsoon rice, which were applied in various combinations with inorganic fertilisers. We studied the influence of these selected nutrient management schemes on soil health attributes, C storage, and plant parameters. The highest gain in C storage (11.65%) was in soil under 80% NPK + CR (5 t ha–1) + FYM (10 t ha–1) treatment. Correspondingly, significant improvement (P < 0.05) in total C, dissolved organic C, and nitrogen availability in soil was evident under this treatment leading to augmentation of soil organic matter status and the net amount of sequestered C in soil after two years of rice cultivation. Such improvements resulted in greater flag leaf photosynthesis, biomass accumulation, and grain yield than the conventionally managed crops. Overall, this research showcases that organic-dominated nutrient management not only restored soil health but was also able to compensate 20% of the recommended NPK fertilisation without penalty on crop yield.


2013 ◽  
Vol 79 (8) ◽  
pp. 2847-2847 ◽  
Author(s):  
Sarah D. Eisenlord ◽  
Zachary Freedman ◽  
Donald R. Zak ◽  
Kai Xue ◽  
Zhili He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document