scholarly journals Identification of Hub Prognosis-Associated Oxidative Stress Genes in Pancreatic Cancer Using Integrated Bioinformatics Analysis

2020 ◽  
Vol 11 ◽  
Author(s):  
Xin Qiu ◽  
Qin-Han Hou ◽  
Qiu-Yue Shi ◽  
Hai-Xing Jiang ◽  
Shan-Yu Qin

BackgroundIntratumoral oxidative stress (OS) has been associated with the progression of various tumors. However, OS has not been considered a candidate therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers.MethodsWe compared gene expression profiles of PC samples and the transcriptome data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC. PC patients’ gene profile from the Gene Expression Omnibus (GEO) database was used as a validation cohort.ResultsA total of 148 differentially expressed OS-related genes in PC were used to construct a protein-protein interaction network. Univariate Cox regression analysis, least absolute shrinkage, selection operator analysis revealed seven hub prognosis-associated OS genes that served to construct a prognostic risk model. Based on integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy was validated in both cohorts, reliably predicted the overall survival of patients with PC and cancer progression. Further analysis revealed significant associations between seven hub gene expression levels and patient outcomes, which were validated at the protein level using the Human Protein Atlas database. A nomogram based on the expression of these seven hub genes exhibited prognostic value in PC.ConclusionOur study provides novel insights into PC pathogenesis and provides new genetic markers for prognosis prediction and clinical treatment personalization for PC patients.

2020 ◽  
Vol 11 ◽  
Author(s):  
Hao Zuo ◽  
Luojun Chen ◽  
Na Li ◽  
Qibin Song

Pancreatic cancer is known as “the king of cancer,” and ubiquitination/deubiquitination-related genes are key contributors to its development. Our study aimed to identify ubiquitination/deubiquitination-related genes associated with the prognosis of pancreatic cancer patients by the bioinformatics method and then construct a risk model. In this study, the gene expression profiles and clinical data of pancreatic cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database and the Genotype-tissue Expression (GTEx) database. Ubiquitination/deubiquitination-related genes were obtained from the gene set enrichment analysis (GSEA). Univariate Cox regression analysis was used to identify differentially expressed ubiquitination-related genes selected from GSEA which were associated with the prognosis of pancreatic cancer patients. Using multivariate Cox regression analysis, we detected eight optimal ubiquitination-related genes (RNF7, NPEPPS, NCCRP1, BRCA1, TRIM37, RNF25, CDC27, and UBE2H) and then used them to construct a risk model to predict the prognosis of pancreatic cancer patients. Finally, the eight risk genes were validated by the Human Protein Atlas (HPA) database, the results showed that the protein expression level of the eight genes was generally consistent with those at the transcriptional level. Our findings suggest the risk model constructed from these eight ubiquitination-related genes can accurately and reliably predict the prognosis of pancreatic cancer patients. These eight genes have the potential to be further studied as new biomarkers or therapeutic targets for pancreatic cancer.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2020 ◽  
Author(s):  
Xing Chen ◽  
Junjie Zheng ◽  
Min ling Zhuo ◽  
Ailong Zhang ◽  
Zhenhui You

Abstract Background: Breast cancer (BRCA) represents the most common malignancy among women worldwide that with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Methods: we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity prediction. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA tumor samples compared with their paracancerous samples in the training set were identified by using edgeR Bioconductor package followed by dimensionality reduction through autoencoder method and univariate Cox regression analysis to screen genes among DEGs that with significant prognosis significance in patients that were previously treated with radiation. LASSO Cox regression method was applied to screen optimal genes for constructing radiotherapy sensitivity prediction signature. Results: 603 DEGs were obtained in BRCA tumor samples, and seven out of which were retained after univariate cox regression analysis. LASSO Cox regression analysis finally remained six genes based on which the radiotherapy sensitivity prediction model was constructed. The signature was proved to be robust in both training and independent testing sets and an independent marker for BRCA radiotherapy sensitivity prediction. Conclusions: this study should be helpful for BRCA patients’ therapeutics selection and clinical decision.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110043
Author(s):  
Na Li ◽  
Honghe Xiao ◽  
Jiangli Shen ◽  
Ximin Qiao ◽  
Fenjuan Zhang ◽  
...  

Objective To investigate the expression and clinical value of the E-selectin gene ( SELE) in colorectal cancer (CRC). Methods Using gene expression profiles and clinicopathological data for patients with CRC from The Cancer Genome Atlas, and tumor and adjacent normal tissues from 31 patients with CRC from Xianyang Central Hospital, we studied the correlation between SELE gene expression and clinical parameters using Kaplan–Meier and Cox proportional hazards regression analyses. Results Higher expression of SELE was significantly associated with a poorer prognosis and shorter survival in patients with CRC. The median expression level of SELE was significantly higher in CRC tissues compared with healthy adjacent tissue. Cox regression analysis showed that the prognosis of CRC was significantly correlated with the expression of SELE. Immunohistochemical analysis also showed that positive expression of E-selectin increased significantly in line with increasing TNM stage. Conclusion: This study confirmed that SELE gene expression is an independent prognostic factor in patients with CRC.


2021 ◽  
Author(s):  
Zhuoqi Li ◽  
Jing Zhou ◽  
Liankun Gu ◽  
Baozhen Zhang

Abstract Colorectal cancer (CRC) is one of the most common and deadly malignant carcinomas. Many long noncoding RNAs (lncRNA) have been reported to play an important role in the tumorigenesis of CRC by interacting with miRNAs and influencing the expression of some mRNAs through a competing endogenous RNA (ceRNA) network. Pseudogenes are one kind of lncRNA and can act as RNA sponges for miRNAs and regulate gene expression via ceRNA networks, but there are few studies about pseudogenes in CRC. In this study, total of 31 differentially expressed (DE) pseudogenes, 17 DE miRNAs and 152 DE mRNAs were identified by analyzing the expression profiles of colon adenocarcinoma (COAD) obtained from The Cancer Genome Atlas (TCGA). And a ceRNA network was constructed based on these RNAs. Kaplan–Meier analysis showed that 7 pseudogenes, 4 miRNAs and 30 mRNAs were significantly associated with overall survival. Then multivariate Cox regression analysis on the ceRNA-related DE pseudogenes was performed and a 5-pseudogene signature with the greatest prognostic value for CRC was identified. What’s more, the results were validated by the Gene Expression Omnibus (GEO) database, and quantitative real‐time PCR (qRT‐PCR) in 113 pairs of CRC tissues. In conclusion, this study provides a pseudogene-associated ceRNA network and 7 prognostic pseudogene biomarkers, and a 5-pseudogene prognostic risk signature that may be useful to predict the survival of CRC patients.


2020 ◽  
Author(s):  
Xianpei Wu ◽  
Zhengyuan Wu ◽  
Jinmin Zhao

Abstract Background Skin cutaneous melanoma (SKCM) is a prevalent skin cancer whose metastatic form is dangerous due to its high morbidity and mortality. Previous studies have systematically established the vital role of oxidative stress (OS) in melanoma progression. This study aimed to identify prognostic OS genes closely associated with SKCM and illustrate their potential mechanisms. Methods Transcriptome data and corresponding clinical traits of patients with SKCM were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A weighted gene co-expression network analysis was conducted to identify relationships between clinical features and OS genes in specific modules. Subsequently, Cox regression analysis was performed on candidate OS genes; four hub prognosis-associated OS genes (AKAP9, VPS13C, ACSL4, and HMOX2) were identified to construct a prognostic model. Results After a series of bioinformatics analysis, our prognostic model was identified significantly associated with the overall survival of patients with SKCM and metastatic ability of the cancer. Furthermore, our risk model demonstrated improved diagnostic accuracy in TCGA and GEO cohorts. In addition, we established two nomograms based on either risk score or hub genes, which displayed favorable discriminating ability for SKCM. Conclusions Together, our results provide novel insight into the potential applications of OS-associated genes in SKCM.


2020 ◽  
Author(s):  
Chao Li ◽  
Tao Liu ◽  
Meng Yue ◽  
Didi Zuo ◽  
Jiantao Zhang

Abstract Background Metabolic genes have played a significant role in tumor development and prognosis. In this study, we constructed a metabolic risk model to predict the prognosis of colon cancer based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Methods We downloaded gene expression profile from TCGA database and retrieved differentially expressed metabolic genes. Then we conducted univariate cox regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis to identify prognosis-related genes and construct the metabolic risk model. Then we validated the risk model in TCGA and GEO datasets by Kaplan-Meier analysis, time-dependent receiver operating characteristic (ROC), risk score, univariate and multivariate cox regression analysis. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and GO (Gene Ontology) enrichment analyses were conducted to reveal the biological processes and pathways of genes by Gene Set Enrichment Analysis (GSEA). Results We extracted 753 metabolic genes and identified 139 differentially expressed metabolic genes from TCGA database. Then 15 prognostic genes were dug out and 8 genes were filtered into LASSO cox regression analysis. An eight-gene prognostic model was constructed after 1000 resamples. The gene signature has been proved to have an excellent ability to predict prognosis by validation based on TCGA and GEO database. Finally, GSEA showed that multiplex metabolism pathways correlated with colon cancer. Conclusion We identified eight metabolic prognostic genes and developed a metabolic risk model based on TCGA and GEO database to predict overall survival rate of colon cancer.


2021 ◽  
Author(s):  
GenYi Qu ◽  
Guang Yang ◽  
Yong Xu ◽  
Maolin Xiang ◽  
Cheng Tang

Abstract Background: Bladder cancer (BLCA) is one of the most common urinary tract malignant tumors. It is associated with poor outcomes, and its etiology and pathogenesis are not fully understood. There is great hope for immunotherapy in treating many malignant tumors; therefore, it is worthwhile to explore the use of immunotherapy for BLCA.Methods: Gene expression profiles and clinical information were obtained from The Cancer Genome Atlas (TCGA), and immune-related genes (IRGs) were downloaded from the Immunology Database and Analysis Portal. Differentially-expressed and survival-associated IRGs in patients with BLCA were identified using computational algorithms and Cox regression analysis. We also performed functional enrichment analysis. Based on IRGs, we employed multivariate Cox analysis to develop a new prognostic index.Results: We identified 261 IRGs that were differentially expressed between BLCA tissue and adjacent tissue, 30 of which were significantly associated with the overall survival (all P<0.01). According to multivariate Cox analysis, nine survival-related IRGs (MMP9, PDGFRA, AHNAK, OAS1, OLR1, RAC3, IGF1, PGF, and SH3BP2) were high-risk genes. We developed a prognostic index based on these IRGs and found it accurately predicted BLCA outcomes associated with the TNM stage. Intriguingly, the IRG-based prognostic index reflected infiltration of macrophages.Conclusions: An independent IRG-based prognostic index provides a practical approach for assessing patients' immune status and prognosis with BLCA. This index independently predicted outcomes of BLCA.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer. Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an . Functional enrichment analysis was performed by Metascape. Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR , MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1 ). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000). Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wanting Song ◽  
Yi Bai ◽  
Jialin Zhu ◽  
Fanxin Zeng ◽  
Chunmeng Yang ◽  
...  

Abstract Background Gastric cancer (GC) represents a major malignancy and is the third deathliest cancer globally. Several lines of evidence indicate that the epithelial-mesenchymal transition (EMT) has a critical function in the development of gastric cancer. Although plentiful molecular biomarkers have been identified, a precise risk model is still necessary to help doctors determine patient prognosis in GC. Methods Gene expression data and clinical information for GC were acquired from The Cancer Genome Atlas (TCGA) database and 200 EMT-related genes (ERGs) from the Molecular Signatures Database (MSigDB). Then, ERGs correlated with patient prognosis in GC were assessed by univariable and multivariable Cox regression analyses. Next, a risk score formula was established for evaluating patient outcome in GC and validated by survival and ROC curves. In addition, Kaplan-Meier curves were generated to assess the associations of the clinicopathological data with prognosis. And a cohort from the Gene Expression Omnibus (GEO) database was used for validation. Results Six EMT-related genes, including CDH6, COL5A2, ITGAV, MATN3, PLOD2, and POSTN, were identified. Based on the risk model, GC patients were assigned to the high- and low-risk groups. The results revealed that the model had good performance in predicting patient prognosis in GC. Conclusions We constructed a prognosis risk model for GC. Then, we verified the performance of the model, which may help doctors predict patient prognosis.


Sign in / Sign up

Export Citation Format

Share Document