scholarly journals Generating Ensembles of Gene Regulatory Networks to Assess Robustness of Disease Modules

2021 ◽  
Vol 11 ◽  
Author(s):  
James T. Lim ◽  
Chen Chen ◽  
Adam D. Grant ◽  
Megha Padi

The use of biological networks such as protein–protein interaction and transcriptional regulatory networks is becoming an integral part of genomics research. However, these networks are not static, and during phenotypic transitions like disease onset, they can acquire new “communities” (or highly interacting groups) of genes that carry out cellular processes. Disease communities can be detected by maximizing a modularity-based score, but since biological systems and network inference algorithms are inherently noisy, it remains a challenge to determine whether these changes represent real cellular responses or whether they appeared by random chance. Here, we introduce Constrained Random Alteration of Network Edges (CRANE), a method for randomizing networks with fixed node strengths. CRANE can be used to generate a null distribution of gene regulatory networks that can in turn be used to rank the most significant changes in candidate disease communities. Compared to other approaches, such as consensus clustering or commonly used generative models, CRANE emulates biologically realistic networks and recovers simulated disease modules with higher accuracy. When applied to breast and ovarian cancer networks, CRANE improves the identification of cancer-relevant GO terms while reducing the signal from non-specific housekeeping processes.

2020 ◽  
Author(s):  
James T. Lim ◽  
Chen Chen ◽  
Adam D. Grant ◽  
Megha Padi

AbstractThe use of biological networks such as protein-protein interaction and transcriptional regulatory networks is becoming an integral part of biological research in the genomics era. However, these networks are not static, and during phenotypic transitions like disease onset, they can acquire new “communities” of genes that carry out key cellular processes. Changes in community structure can be detected by maximizing a modularity-based score, but because biological systems and network inference algorithms are inherently noisy, it remains a challenge to determine whether these changes represent real cellular responses or whether they appeared by random chance. Here, we introduce Constrained Random Alteration of Network Edges (CRANE), a computational method that samples networks with fixed node strengths to identify a null distribution and assess the robustness of observed changes in network structure. In contrast with other approaches, such as consensus clustering or established network generative models, CRANE produces more biologically realistic results and performs better in simulations. When applied to breast and ovarian cancer networks, CRANE improves the recovery of cancer-relevant GO terms while reducing the signal from non-specific housekeeping processes. CRANE is a general tool that can be applied in tandem with a variety of stochastic community detection methods to evaluate the veracity of their results.


2020 ◽  
Vol 21 (11) ◽  
pp. 1054-1059
Author(s):  
Bin Yang ◽  
Yuehui Chen

: Reconstruction of gene regulatory networks (GRN) plays an important role in understanding the complexity, functionality and pathways of biological systems, which could support the design of new drugs for diseases. Because differential equation models are flexible androbust, these models have been utilized to identify biochemical reactions and gene regulatory networks. This paper investigates the differential equation models for reverse engineering gene regulatory networks. We introduce three kinds of differential equation models, including ordinary differential equation (ODE), time-delayed differential equation (TDDE) and stochastic differential equation (SDE). ODE models include linear ODE, nonlinear ODE and S-system model. We also discuss the evolutionary algorithms, which are utilized to search the optimal structures and parameters of differential equation models. This investigation could provide a comprehensive understanding of differential equation models, and lead to the discovery of novel differential equation models.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Stephen Kotiang ◽  
Ali Eslami

Abstract Background The desire to understand genomic functions and the behavior of complex gene regulatory networks has recently been a major research focus in systems biology. As a result, a plethora of computational and modeling tools have been proposed to identify and infer interactions among biological entities. Here, we consider the general question of the effect of perturbation on the global dynamical network behavior as well as error propagation in biological networks to incite research pertaining to intervention strategies. Results This paper introduces a computational framework that combines the formulation of Boolean networks and factor graphs to explore the global dynamical features of biological systems. A message-passing algorithm is proposed for this formalism to evolve network states as messages in the graph. In addition, the mathematical formulation allows us to describe the dynamics and behavior of error propagation in gene regulatory networks by conducting a density evolution (DE) analysis. The model is applied to assess the network state progression and the impact of gene deletion in the budding yeast cell cycle. Simulation results show that our model predictions match published experimental data. Also, our findings reveal that the sample yeast cell-cycle network is not only robust but also consistent with real high-throughput expression data. Finally, our DE analysis serves as a tool to find the optimal values of network parameters for resilience against perturbations, especially in the inference of genetic graphs. Conclusion Our computational framework provides a useful graphical model and analytical tools to study biological networks. It can be a powerful tool to predict the consequences of gene deletions before conducting wet bench experiments because it proves to be a quick route to predicting biologically relevant dynamic properties without tunable kinetic parameters.


2019 ◽  
Vol 6 (6) ◽  
pp. 1176-1188 ◽  
Author(s):  
Yuxin Chen ◽  
Yang Shen ◽  
Pei Lin ◽  
Ding Tong ◽  
Yixin Zhao ◽  
...  

Abstract Food web and gene regulatory networks (GRNs) are large biological networks, both of which can be analyzed using the May–Wigner theory. According to the theory, networks as large as mammalian GRNs would require dedicated gene products for stabilization. We propose that microRNAs (miRNAs) are those products. More than 30% of genes are repressed by miRNAs, but most repressions are too weak to have a phenotypic consequence. The theory shows that (i) weak repressions cumulatively enhance the stability of GRNs, and (ii) broad and weak repressions confer greater stability than a few strong ones. Hence, the diffuse actions of miRNAs in mammalian cells appear to function mainly in stabilizing GRNs. The postulated link between mRNA repression and GRN stability can be seen in a different light in yeast, which do not have miRNAs. Yeast cells rely on non-specific RNA nucleases to strongly degrade mRNAs for GRN stability. The strategy is suited to GRNs of small and rapidly dividing yeast cells, but not the larger mammalian cells. In conclusion, the May–Wigner theory, supplanting the analysis of small motifs, provides a mathematical solution to GRN stability, thus linking miRNAs explicitly to ‘developmental canalization’.


2018 ◽  
Vol 1 (1) ◽  
pp. 153-180 ◽  
Author(s):  
Patrick McGillivray ◽  
Declan Clarke ◽  
William Meyerson ◽  
Jing Zhang ◽  
Donghoon Lee ◽  
...  

Biomedical data scientists study many types of networks, ranging from those formed by neurons to those created by molecular interactions. People often criticize these networks as uninterpretable diagrams termed hairballs; however, here we show that molecular biological networks can be interpreted in several straightforward ways. First, we can break down a network into smaller components, focusing on individual pathways and modules. Second, we can compute global statistics describing the network as a whole. Third, we can compare networks. These comparisons can be within the same context (e.g., between two gene regulatory networks) or cross-disciplinary (e.g., between regulatory networks and governmental hierarchies). The latter comparisons can transfer a formalism, such as that for Markov chains, from one context to another or relate our intuitions in a familiar setting (e.g., social networks) to the relatively unfamiliar molecular context. Finally, key aspects of molecular networks are dynamics and evolution, i.e., how they evolve over time and how genetic variants affect them. By studying the relationships between variants in networks, we can begin to interpret many common diseases, such as cancer and heart disease.


2020 ◽  
Vol 17 (163) ◽  
pp. 20190845
Author(s):  
Pablo Villegas ◽  
Miguel A. Muñoz ◽  
Juan A. Bonachela

Biological networks exhibit intricate architectures deemed to be crucial for their functionality. In particular, gene regulatory networks, which play a key role in information processing in the cell, display non-trivial architectural features such as scale-free degree distributions, high modularity and low average distance between connected genes. Such networks result from complex evolutionary and adaptive processes difficult to track down empirically. On the other hand, there exists detailed information on the developmental (or evolutionary) stages of open-software networks that result from self-organized growth across versions. Here, we study the evolution of the Debian GNU/Linux software network, focusing on the changes of key structural and statistical features over time. Our results show that evolution has led to a network structure in which the out-degree distribution is scale-free and the in-degree distribution is a stretched exponential. In addition, while modularity, directionality of information flow, and average distance between elements grew, vulnerability decreased over time. These features resemble closely those currently shown by gene regulatory networks, suggesting the existence of common adaptive pathways for the architectural design of information-processing networks. Differences in other hierarchical aspects point to system-specific solutions to similar evolutionary challenges.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 61
Author(s):  
Kuan Liu ◽  
Haiyuan Liu ◽  
Dongyan Sun ◽  
Lei Zhang

The reconstruction of gene regulatory networks based on gene expression data can effectively uncover regulatory relationships between genes and provide a deeper understanding of biological control processes. Non-linear dependence is a common problem in the regulatory mechanisms of gene regulatory networks. Various methods based on information theory have been developed to infer networks. However, the methods have introduced many redundant regulatory relationships in the network inference process. A recent measurement method called distance correlation has, in many cases, shown strong and computationally efficient non-linear correlations. In this paper, we propose a novel regulatory network inference method called the distance-correlation and network topology centrality network (DCNTC) method. The method is based on and extends the Local Density Measurement of Network Node Centrality (LDCNET) algorithm, which has the same choice of network centrality ranking as the LDCNET algorithm, but uses a simpler and more efficient distance correlation measure of association between genes. In this work, we integrate distance correlation and network topological centrality into the reasoning about the structure of gene regulatory networks. We will select optimal thresholds based on the characteristics of the distribution of each gene pair in relation to distance correlation. Experiments were carried out on four network datasets and their performance was compared.


Author(s):  
Marianna Milano ◽  
Pietro Guzzi ◽  
Mario Cannataro

Omics sciences are widely used to analyze diseases at a molecular level. Usually, results of omics experiments are sets of candidate genes potentially involved in different diseases. The interpretation of results and the filtering of candidate genes or proteins selected in an experiment is a challenge in some scenarios. This problem is particularly evident in clinical environments in which researchers are interested in the behavior of few molecules related to some specific disease while results may contains thousands of data and have very relevant dimensions. The filtering requires the use of domain-specific knowledge that is usually encoded into ontologies. Consequently, to filter out false positive genes, different approaches for selecting genes have been introduced. Such approaches are often referred to as Gene prioritization methods. They aim to identify the most related genes to a disease among a larger set of candidates genes, through the use of computational methods. We implemented GoD (Gene ranking based On Diseases), an algorithm that ranks a given set of genes based on ontology annotations. The algorithm orders genes by the semantic similarity computed with respect to a disease among the annotations of each gene and those describing the selected disease.The current version of GoD enables the prioritization of a list of input genes for a selected disease. It uses HPO (Human Phenotype Ontology), GO (Gene Ontology), and DO (Disease Ontology) ontologies for the calculation of the ranking. It takes as input a list of genes or gene products annotated with GO Terms, HPO Terms, DO Terms and a selected disease described regarding annotation of GO, HPO or DO (user may also provide novel annotations). It produces as output the ranking of those genes with respect of the input disease. Package consists of three main functions: hpoGoD (for HPO based prioritization), goGoD (for GO based prioritization), and doGoD (for DO based prioritization). We tested GoD on Gene Regulatory Networks (GRNs). Biological network inference aims to reconstruct network of interactions (or associations) among biological genes starting from experimental observations. We selected three expression datasets: Dataset 1 (GDS3285) , related to breast cancer disease; Dataset 2 (GDS5072), related to prostate cancer disease; and Dataset 3 (GDS5093), related to Dengue virus (DENV) infection. Initially, experimental data are given as input to five GRN inference algorithms, i.e. ARACNE, CLR, MRNET, GENIE3 and GGM, to produce 5 inferred GRN networks. For each inferred GRN, GoD receives as input the list of top genes and produces for each gene a semantic similarity value on a selected disease considering one of the previous ontologies (e.g. Disease Ontology). For each GRN, the genes are ranked and reordered on the basis of the computed semantic similarity and are compared allowing to rank each GRN inference method with respect to the initially selected disease.


Sign in / Sign up

Export Citation Format

Share Document