disease modules
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
pp. gr.275889.121
Author(s):  
Taylor Weiskittel ◽  
Choong Yong Ung ◽  
Cristina Correia ◽  
Cheng Zhang ◽  
Hu Li

Current understandings of individual disease etiology and therapeutics are limited despite great need. To fill the gap, we propose a novel computational pipeline which collects potent disease gene cooperative pathways to envision individualized disease etiology and therapies. Our algorithm constructs individualized disease modules de novo which enable us to elucidate the importance of mutated genes in specific patients and to understand the synthetic penetrance of these genes across patients. We reveal that importance of notorious cancer drivers TP53 and PIK3CA fluctuate widely across breast cancers and peak in tumors with distinct numbers of mutations, and that rarely mutated genes such as XPO1 and PLEKHA1 have high disease module importance in specific individuals. Furthermore, individualized module disruption enables us to devise customized singular and combinatorial target therapies which were highly varied across patients demonstrating the need for precision therapeutics pipelines. As the first analysis of de novo individualized disease modules, we illustrate the power of individualized disease modules for precision medicine by providing deep novel insights on the activity of diseased genes in individuals.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sepideh Sadegh ◽  
James Skelton ◽  
Elisa Anastasi ◽  
Judith Bernett ◽  
David B. Blumenthal ◽  
...  

AbstractTraditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs provides an alternative with lower costs and faster drug development timelines. However, the data necessary for the identification of disease modules, i.e. pathways and sub-networks describing the mechanisms of complex diseases which contain potential drug targets, are scattered across independent databases. Moreover, existing studies are limited to predictions for specific diseases or non-translational algorithmic approaches. There is an unmet need for adaptable tools allowing biomedical researchers to employ network-based drug repurposing approaches for their individual use cases. We close this gap with NeDRex, an integrative and interactive platform for network-based drug repurposing and disease module discovery. NeDRex integrates ten different data sources covering genes, drugs, drug targets, disease annotations, and their relationships. NeDRex allows for constructing heterogeneous biological networks, mining them for disease modules, prioritizing drugs targeting disease mechanisms, and statistical validation. We demonstrate the utility of NeDRex in five specific use-cases.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Inés Rivero-García ◽  
Miguel Castresana-Aguirre ◽  
Luca Guglielmo ◽  
Dimitri Guala ◽  
Erik L. L. Sonnhammer

AbstractThis analysis presents a systematic evaluation of the extent of therapeutic opportunities that can be obtained from drug repurposing by connecting drug targets with disease genes. When using FDA-approved indications as a reference level we found that drug repurposing can offer an average of an 11-fold increase in disease coverage, with the maximum number of diseases covered per drug being increased from 134 to 167 after extending the drug targets with their high confidence first neighbors. Additionally, by network analysis to connect drugs to disease modules we found that drugs on average target 4 disease modules, yet the similarity between disease modules targeted by the same drug is generally low and the maximum number of disease modules targeted per drug increases from 158 to 229 when drug targets are neighbor-extended. Moreover, our results highlight that drug repurposing is more dependent on target proteins being shared between diseases than on polypharmacological properties of drugs. We apply our drug repurposing and network module analysis to COVID-19 and show that Fostamatinib is the drug with the highest module coverage.



2021 ◽  
Author(s):  
Yu Zhang ◽  
Xiao Chang ◽  
Jie Xia ◽  
Yanhong Huang ◽  
Shaoyan Sun ◽  
...  

Abstract Abundant datasets generated from various big science projects on diseases have presented great challenges and opportunities, which are contributed to unfold the complexity of diseases. The discovery of disease- associated molecular networks for each individual plays an important role in personalized therapy and precision treatment of cancer based on the reference networks. However, there are no effective ways to distinguish the consistency of different reference networks. In this study, we developed a statistical method, i.e. a sample-specific differential network (SSDN), to construct and analyze such networks based on gene expression of a single sample against a reference dataset. We proved that the SSDN is structurally consistent even with different reference datasets if the reference dataset can follow certain conditions. The SSDN also can be used to identify patient-specific disease modules or network biomarkers as well as predict the potential driver genes of a tumor sample.



BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tejaswi V. S. Badam ◽  
Hendrik A. de Weerd ◽  
David Martínez-Enguita ◽  
Tomas Olsson ◽  
Lars Alfredsson ◽  
...  

Abstract Background There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. Result We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10− 47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. Conclusions We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases.



2021 ◽  
Vol 11 ◽  
Author(s):  
James T. Lim ◽  
Chen Chen ◽  
Adam D. Grant ◽  
Megha Padi

The use of biological networks such as protein–protein interaction and transcriptional regulatory networks is becoming an integral part of genomics research. However, these networks are not static, and during phenotypic transitions like disease onset, they can acquire new “communities” (or highly interacting groups) of genes that carry out cellular processes. Disease communities can be detected by maximizing a modularity-based score, but since biological systems and network inference algorithms are inherently noisy, it remains a challenge to determine whether these changes represent real cellular responses or whether they appeared by random chance. Here, we introduce Constrained Random Alteration of Network Edges (CRANE), a method for randomizing networks with fixed node strengths. CRANE can be used to generate a null distribution of gene regulatory networks that can in turn be used to rank the most significant changes in candidate disease communities. Compared to other approaches, such as consensus clustering or commonly used generative models, CRANE emulates biologically realistic networks and recovers simulated disease modules with higher accuracy. When applied to breast and ovarian cancer networks, CRANE improves the identification of cancer-relevant GO terms while reducing the signal from non-specific housekeeping processes.



2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yadi Zhou ◽  
Jiansong Fang ◽  
Lynn M. Bekris ◽  
Young Heon Kim ◽  
Andrew A. Pieper ◽  
...  

Abstract Background Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery and development process is essential for this endeavor. Methods In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer’s Drug Discovery, https://alzgps.lerner.ccf.org), a comprehensive systems biology tool to enable searching, visualizing, and analyzing multi-omics, various types of heterogeneous biological networks, and clinical databases for target identification and development of effective prevention and treatment for AD. Results Via AlzGPS: (1) we curated more than 100 AD multi-omics data sets capturing DNA, RNA, protein, and small molecule profiles underlying AD pathogenesis (e.g., early vs. late stage and tau or amyloid endophenotype); (2) we constructed endophenotype disease modules by incorporating multi-omics findings and human protein-protein interactome networks; (3) we provided possible treatment information from ~ 3000 FDA approved/investigational drugs for AD using state-of-the-art network proximity analyses; (4) we curated nearly 300 literature references for high-confidence drug candidates; (5) we included information from over 1000 AD clinical trials noting drug’s mechanisms-of-action and primary drug targets, and linking them to our integrated multi-omics view for targets and network analysis results for the drugs; (6) we implemented a highly interactive web interface for database browsing and network visualization. Conclusions Network visualization enabled by AlzGPS includes brain-specific neighborhood networks for genes-of-interest, endophenotype disease module networks for omics-of-interest, and mechanism-of-action networks for drugs targeting disease modules. By virtue of combining systems pharmacology and network-based integrative analysis of multi-omics data, AlzGPS offers actionable systems biology tools for accelerating therapeutic development in AD.



Author(s):  
Paola Velardi ◽  
Lorenzo Madeddu ◽  
Giorgio Grani
Keyword(s):  


2020 ◽  
Author(s):  
Inés Rivero ◽  
Miguel Castresana ◽  
Dimitri.Guala ◽  
Erik Sonnhammer

This analysis presents a systematic evaluation of the extent of therapeutic opportunities that can be obtained from drug repurposing by connecting drug targets with disease genes. When using FDA-approved indications as a reference level we found that drug repurposing can offer an average of an 11-fold increase in disease coverage, with the maximum number of diseases covered per drug being increased from 134 to 167 after extending the drug targets with their high confidence first neighbors. Additionally, by network analysis to connect drugs to disease modules we found that, on average, drugs target 4 disease modules, yet the similarity between disease modules targeted by the same drug is generally low and the total number of disease modules targeted per drug increases from 134 to 230 when drug targets are extended Moreover, our results highlight that drug repurposing is more dependent on target proteins shared between diseases than on polypharmacological properties of drugs. We apply our drug repurposing and network module analysis to COVID-19 and show that Fostamatinib is the drug with the highest module coverage.



2020 ◽  
Author(s):  
Tejaswi V.S. Badam ◽  
Hendrik A. de Weerd ◽  
David Martínez-Enguita ◽  
Tomas Olsson ◽  
Lars Alfredsson ◽  
...  

ABSTRACTBackgroundThere are few (if any) practical guidelines for predictive and falsifiable multi-omics data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules.MethodsWe assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omics integration of 19 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor associated genes from several independent cohorts.ResultsOur benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS-genes. The multi-omics case study using MS revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module was differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10-47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS.ConclusionWe believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omics approaches for complex diseases.



Sign in / Sign up

Export Citation Format

Share Document