scholarly journals Circ-MFN2 Positively Regulates the Proliferation, Metastasis, and Radioresistance of Colorectal Cancer by Regulating the miR-574-3p/IGF1R Signaling Axis

2021 ◽  
Vol 12 ◽  
Author(s):  
Defeng Liu ◽  
Shihao Peng ◽  
Yangyang Li ◽  
Tao Guo

Numerous studies have shown that the expression of circular RNA (circRNA) is closely related to the malignant progression of cancer. However, the role of circ-MFN2 in colorectal cancer (CRC) is unclear. Our study aims to explore the role and mechanism of circ-MFN2 in CRC progression. The relative expression levels of circ-MFN2, microRNA (miR)-574-3p and insulin-like growth factor 1 receptor (IGF1R) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was determined using 3-(4, 5-dimethyl-2 thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The colony number and radioresistance of cells were assessed using colony formation assay. Moreover, the migration and invasion of cells were measured using transwell assay. Tumor xenograft model was constructed to evaluate the effect of circ-MFN2 knockdown on CRC tumor growth. Furthermore, dual-luciferase reporter assay was used to verify the interaction between miR-574-3p and circ-MFN2 or IGF1R. In addition, the protein level of IGF1R was evaluated by western blot (WB) analysis. Circ-MFN2 expression was elevated in CRC tissues and cells. Knockdown of circ-MFN2 restrained the proliferation, migration, invasion, and radioresistance of CRC cells in vitro. Furthermore, silenced circ-MFN2 also reduced the tumor volume and weight of CRC in vivo. MiR-574-3p could be sponged by circ-MFN2, and its inhibitor reversed the suppression effect of circ-MFN2 silencing on CRC progression. Moreover, IGF1R was a target of miR-574-3p, and its overexpression reversed the inhibition effect of miR-574-3p mimic on CRC progression. In addition, circ-MFN2 could positively regulate IGF1R expression by sponging miR-574-3p. Our results revealed that circ-MFN2 promoted the proliferation, metastasis and radioresistance of CRC through regulating the miR-574-3p/IGF1R axis, suggesting that circ-MFN2 might be a novel therapeutic biomarker for CRC.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Linfei Huang ◽  
Lei Zhu ◽  
Sheng Pan ◽  
Jing Xu ◽  
Miao Xie ◽  
...  

Abstract Background Circular RNA 0029803 (circ_0029803) was found to be upregulated in colorectal cancer (CRC) tissues, but its function and underlying molecular mechanism are not studied in CRC. Methods The expression levels of circ_0029803, microRNA-216b-5p (miR-216b-5p), and ski-oncogene-like (SKIL) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RNase R treatment was used to affirm the existence of circ_0029803. Cell proliferation, apoptosis, migration, and invasion were assessed by colony formation, flow cytometry, and Transwell assays, respectively. A glucose and lactate assay kit was used to detect glucose consumption and lactate production. Western blot was applied to analyze the levels of all proteins. Dual-luciferase reporter assay was performed to assess the relationship between miR-216b-5p and circ_0029803 or SKIL. Tumor xenograft models were established to elucidate the effect of circ_0029803 in vivo. Results Circ_0029803 expression was enhanced in CRC tissues and cells, and the 5-year overall survival rate of patients with high circ_0029803 expression was substantially reduced. Circ_0029803 depletion retarded proliferation, migration, invasion, EMT and glycolysis of CRC cells in vitro as well as the tumor growth in vivo. Mechanically, circ_0029803 could serve as miR-216b-5p sponge to regulate its expression, and miR-216b-5p knockdown reversed the inhibition of si-circ_0029803 on the malignant behaviors of CRC cells. Additionally, as the target mRNA of miR-216b-5p, SKIL could counteract the inhibitory effect of miR-216b-5p on the development of CRC cells. Importantly, silencing circ_0029803 reduced SKIL expression via sponging miR-216b-5p. Conclusion Circ_0029803 knockdown hindered proliferation, migration, invasion, EMT, and glycolysis and promoted apoptosis in CRC cells by modulating the miR-216b-5p/SKIL axis.


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 342 (LINC00342) has been identified as a novel oncogene, however, the functional role of LINC00342 in colorectal cancer (CRC) remained unclear. Methods The expression of LINC00342 was detected by real-time PCR. Cell proliferation, migration and invasion and xenograft model were examined to analyze the biological functions of LINC00342 in vitro and in vivo. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Downregulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 could weaken the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 may sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the oncogenesis facilitated by LINC00342 was inhibited by NPEPL1 depletion.Conclusion LINC00342 promoted CRC progression by competitively binding miR-19a-3p with NPEPL1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 00342 (LINC00342) has been identified as a novel oncogene. However, the functional role of LINC00342 in colorectal cancer (CRC) remains unclear. Methods The expression of LINC00342 is detected by real-time PCR (RT-PCR) analysis. Cell proliferation, migration and invasion and xenograft model are examined to analyze the biological functions of LINC00342 in vitro and in vivo using colony formation, would healing and transwell analyses. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays are used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Down-regulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 inhibited the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 might sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the ontogenesis facilitated by LINC00342 was inhibited due to the depletion of NPEPL1. Conclusion LINC00342 promotes CRC progression by competitively binding miR-19a-3p with NPEPL1.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahang Liang ◽  
Jingbo Shi ◽  
Qingsi He ◽  
Guorui Sun ◽  
Lei Gao ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have been confirmed to be key regulators of many diseases. With many scholars devoted to studying the biological function and mechanism of circRNAs, their mysterious veil is gradually being revealed. In our research, we explored a new circRNA, hsa_circ_0026416, which was identified as upregulated in CRC with the largest fold change (logFC = 3.70) of the evaluated circRNAs via analysing expression profiling data by high throughput sequencing of members of the GEO dataset (GSE77661) to explore the molecular mechanisms of CRC. Methods qRT-PCR and western blot analysis were utilized to assess the expression of hsa_circ_0026416, miR-346 and Nuclear Factor I/B (NFIB). CCK-8 and transwell assays were utilized to examine cell proliferation, migration and invasion in vitro, respectively. A luciferase reporter assay was used to verify the combination of hsa_circ_0026416, miR-346 and NFIB. A nude mouse xenograft model was also utilized to determine the role of hsa_circ_0026416 in CRC cell growth in vivo. Results Hsa_circ_0026416 was markedly upregulated in CRC patient tissues and plasma and was a poor prognosis in CRC patients. In addition, the area under the curve (AUC) of hsa_circ_0026416 (0.767) was greater than the AUC of CEA (0.670), CA19-9 (0.592) and CA72-4 (0.575). Functionally, hsa_circ_0026416 promotes cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, hsa_circ_0026416 may function as a ceRNA via competitively absorbing miR-346 to upregulate the expression of NFIB. Conclusions In summary, our findings demonstrate that hsa_circ_0026416 is an oncogene in CRC. Hsa_circ_0026416 promotes the progression of CRC via the miR-346/NFIB axis and may represent a potential biomarker for diagnosis and therapy in CRC.


Author(s):  
Chenyu Ding ◽  
Zanyi Wu ◽  
Honghai You ◽  
Hongliang Ge ◽  
Shufa Zheng ◽  
...  

Abstract Background Circular RNA nuclear factor I X (circNFIX) has been reported to play an important role in glioma progression. However, the mechanism by which circNFIX participates in glioma progression remains poorly understood. Methods GERIA online were used to analyze the abnormally expressed genes in glioma tissues. The expression levels of circNFIX, microRNA (miR)-378e and Ribophorin-II (RPN2) were measured by quantitative real-time polymerase chain reaction or western blot. Cell cycle distribution, apoptosis, glycolysis, migration and invasion were determined by flow cytometry, special kit and trans-well assays, respectively. The target association between miR-378e and circNFIX or RPN2 was confirmed by luciferase reporter assay, RNA immunoprecipitation and pull-down. Xenograft model was established to investigate the role of circNFIX in vivo. Results The expression of circNFIX was enhanced in glioma tissues and cells compared with matched controls and high expression of circNFIX indicated poor outcomes of patients. Knockdown of circNFIX led to arrest of cell cycle, inhibition of glycolysis, migration and invasion and promotion of apoptosis in glioma cells. circNFIX was a sponge of miR-378e. miR-378e overexpression suppressed cell cycle process, glycolysis, migration and invasion but promoted apoptosis. miR-378e silence abated the suppressive role of circNFIX knockdown in glioma progression. RPN2 as a target of miR-378e was positively regulated via circNFIX by competitively sponging miR-378e. Silencing circNFIX decreased glioma xenograft tumor growth by regulating miR-378e/RPN2 axis. Conclusion Knockdown of circNFIX inhibits progression of glioma in vitro and in vivo by increasing miR-378e and decreasing RPN2, providing a novel mechanism for understanding the pathogenesis of glioma.


Author(s):  
Zhipeng Jiang ◽  
Qinwen Tai ◽  
Xiaojun Xie ◽  
Zehui Hou ◽  
Wei Liu ◽  
...  

Abstract Background Colorectal cancer (CRC) is a common malignant tumor. Circular RNAs (circRNAs) have been reported to take part in the progression of CRC. However, the functions of circ_0084615 in CRC development are still undefined. In this study, we aimed to explore the functions and underlying mechanisms of circ_0084615 in CRC. Methods qRT-PCR, western blot assay and IHC assay were utilized for the levels of circ_0084615, miR-599, ONECUT2 or EIF4A3. 5-ethynyl-2’-deoxyuridine (EdU) assay and colony formation assay were conducted for cell proliferation ability. Wound-healing assay and transwell assay were applied to evaluate cell migration and invasion. Tube formation assay was used to analyze angiogenesis ability. RNA immunoprecipitation (RIP) assay, RNA pull down assay and dual-luciferase reporter assay were used to analyze the relationships of circ_0084615, miR-599, ONECUT2 and EIF4A3. Murine xenograft model assay was employed for the role of circ_0084615 in vivo. Results Circ_0084615 was elevated in CRC tissues and was linked to TNM stages, lymph node metastasis, differentiation and overall survival rate. Circ_0084615 knockdown inhibited CRC cell proliferation, migration, invasion and angiogenesis in vitro and hampered tumorigenesis in vivo. Circ_0084615 sponged miR-599 and miR-599 inhibition reversed circ_0084615 knockdown-mediated effects on CRC cell growth, motility and angiogenesis. ONECUT2 was identified as the target gene of miR-599. ONECUT2 overexpression recovered the effects of miR-599 on CRC malignant behaviors. Additionally, EIF4A3 induced circ_0084615 expression. Conclusions EIF4A3-induced circ_0084615 played an oncogenic role in CRC development via miR-599/ONECUT2 axis.


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 00342 (LINC00342) has been identified as a novel oncogene. However, the functional role of LINC00342 in colorectal cancer (CRC) remains unclear. Methods The expression of LINC00342 is detected by real-time PCR (RT-PCR) analysis. Cell proliferation, migration and invasion and xenograft model are examined to analyze the biological functions of LINC00342 in vitro and in vivo using colony formation, would healing and transwell analyses. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays are used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Down-regulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 inhibited the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 might sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the ontogenesis facilitated by LINC00342 was inhibited due to the depletion of NPEPL1.Conclusion LINC00342 promotes CRC progression by competitively binding miR-19a-3p with NPEPL1.


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 00342 (LINC00342) has been identified as a novel oncogene. However, the functional role of LINC00342 in colorectal cancer (CRC) remains unclear. Methods The expression of LINC00342 was detected by real-time PCR. Cell proliferation, migration and invasion and xenograft model were examined to analyze the biological functions of LINC00342 in vitro and in vivo. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Downregulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 could weaken the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 might sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the oncogenesis facilitated by LINC00342 was inhibited due to the depletion of NPEPL1.Conclusion LINC00342 promoted CRC progression by competitively binding miR-19a-3p with NPEPL1.


Author(s):  
Kunpeng Liu ◽  
Yuhua Mou ◽  
Xiufang Shi ◽  
Tingkun Liu ◽  
Zhanfeng Chen ◽  
...  

Aim: Colorectal cancer (CRC) has developed into the third leading reason of cancer-associated death worldwide. Studies has confirmed that circular RNAs (circRNAs) sponge microRNAs (miRNAs) to regulate the function of downstream genes. This study aimed to expound the underlying mechanism of circRNA 100146 in CRC. Methods: The expression of circRNA 100146, miR-149 and high mobility group A2 (HMGA2) was detected by quantitative real time PCR (RT-qPCR). A series of bio-functional effects (cell viability, apoptosis, migration/invasion) were evaluated by methyl thiazolyl tetrazolium (MTT), flow cytometry, transwell. Protein level was measured by Western blot assay. The xenograft model was established for in vivo experiments. The interactions among circRNA 100146, miR-149 and HMGA2 were evaluated by dual-luciferase reporter assay, RNA immunoprecipitation assays, or RNA pulldown assay. Results: CircRNA 100146 was upregulated in CRC tissues and cells. CircRNA 100146 knockdown inhibited cell proliferation, promoted apoptosis and suppressed migration and invasion in vitro, and impeded tumor growth in vivo. Also, miR-149 was negalitively regulated by circRNA 100146, and targeted to HMGA2 and mediated its expression. Moreover, miR-149 interference abrogated the activities of silenced circRNA 100146 in proliferation, apoptosis, migration and invasion. Furthermore, HMGA2 overexpression abated the effects above caused by circRNA 100146 silencing, while the mutant on miR-149 binding sites in HMGA2 3’UTR lead to it losing this ability. Conclusion: CircRNA 100146 knockdown repressed proliferation, enhanced apoptosis and hindered migration and invasion in SW620 and SW480 cells through targeting miR-149/HMGA2 axis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Wei ◽  
Liefeng Ji ◽  
Wanli Duan ◽  
Jiang Zhu

Abstract Background Circular RNAs (circRNAs) have been shown to participate in the chemoresistance and tumorigenesis of multiple cancers. The purpose of this research was to investigate the function of circ_0081001 in methotrexate (MTX) resistance of osteosarcoma (OS) and its potential molecular mechanism. Methods The expression of circ_0081001, cytochrome P450 family 51 subfamily A member 1 (CYP51A1), and miR-494-3p was detected by qRT-PCR. Cell viability, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and transwell assay, respectively. Western blot (WB) assay was used to measure the protein levels of cleaved-caspase3 (cleaved-casp3), E-cadherin, N-cadherin, and transglutaminase-2 (TGM2). The interaction between miR-494-3p and circ_0081001 or TGM2 was predicted by bioinformatics analysis and verified using the dual-luciferase reporter assay. The mice xenograft model was established to investigate the roles of circ_0081001 in MTX resistance of OS in vivo. Results Circ_0081001 and TGM2 were upregulated, and miR-494-3p was downregulated in MTX-resistant OS tissues and cells. Moreover, circ_0081001 interference enhanced cell sensitivity to MTX through promoting apoptosis and inhibiting cell viability and metastasis in vitro. Furthermore, circ_0081001 was identified as a molecular sponge of miR-494-3p to upregulate TGM2 level. In addition, circ_0081001 knockdown inhibited MTX resistance via upregulating miR-494-3p and downregulating TGM2. Besides, circ_0081001 downregulation improved MTX sensitivity of OS in vivo. Conclusion Knockdown of circ_0081001 enhanced MTX sensitivity of OS cells through downregulating TGM2 by sponging miR-494-3p, elucidating a novel regulatory mechanism for chemoresistance of OS and providing a potential circRNA-targeted therapy for OS.


Sign in / Sign up

Export Citation Format

Share Document