scholarly journals Exploring Biological Impacts of Prenatal Nutrition and Selection for Residual Feed Intake on Beef Cattle Using Omics Technologies: A Review

2021 ◽  
Vol 12 ◽  
Author(s):  
Aidin Foroutan ◽  
David S. Wishart ◽  
Carolyn Fitzsimmons

Approximately 70% of the cost of beef production is impacted by dietary intake. Maximizing production efficiency of beef cattle requires not only genetic selection to maximize feed efficiency (i.e., residual feed intake (RFI)), but also adequate nutrition throughout all stages of growth and development to maximize efficiency of growth and reproductive capacity, even during gestation. RFI as a measure of feed efficiency in cattle has been recently accepted and used in the beef industry, but the effect of selection for RFI upon the dynamics of gestation has not been extensively studied, especially in the context of fluctuating energy supply to the dam and fetus. Nutrient restriction during gestation has been shown to negatively affect postnatal growth and development as well as fertility of beef cattle offspring. This, when combined with the genetic potential for RFI, may significantly affect energy partitioning in the offspring and subsequently important performance traits. In this review, we discuss: 1) the importance of RFI as a measure of feed efficiency and how it can affect other economic traits in beef cattle; 2) the influence of prenatal nutrition on physiological phenotypes in calves; 3) the benefits of investigating the interaction of genetic selection for RFI and prenatal nutrition; 4) how metabolomics, transcriptomics, and epigenomics have been employed to investigate the underlying biology associated with prenatal nutrition, RFI, or their interactions in beef cattle; and 5) how the integration of omics information is adding a level of deeper understanding of the genetic architecture of phenotypic traits in cattle.

2019 ◽  
Vol 97 (5) ◽  
pp. 2181-2187
Author(s):  
Ahmed A Elolimy ◽  
Emad Abdel-Hamied ◽  
Liangyu Hu ◽  
Joshua C McCann ◽  
Daniel W Shike ◽  
...  

Abstract Residual feed intake (RFI) is a widely used measure of feed efficiency in cattle. Although the precise biologic mechanisms associated with improved feed efficiency are not well-known, most-efficient steers (i.e., with low RFI coefficient) downregulate abundance of proteins controlling protein degradation in skeletal muscle. Whether cellular mechanisms controlling protein turnover in ruminal tissue differ by RFI classification is unknown. The aim was to investigate associations between RFI and signaling through the mechanistic target of rapamycin (MTOR) and ubiquitin-proteasome pathways in ruminal epithelium. One hundred and forty-nine Red Angus cattle were allocated to 3 contemporary groups according to sex and herd origin. Animals were offered a finishing diet for 70 d to calculate the RFI coefficient for each. Within each group, the 2 most-efficient (n = 6) and least-efficient animals (n = 6) were selected. Compared with least-efficient animals, the most-efficient animals consumed less feed (P < 0.05; 18.36 vs. 23.39 kg/d DMI). At day 70, plasma samples were collected for insulin concentration analysis. Ruminal epithelium was collected immediately after slaughter to determine abundance and phosphorylation status of 29 proteins associated with MTOR, ubiquitin-proteasome, insulin signaling, and glucose and amino acid transport. Among the proteins involved in cellular protein synthesis, most-efficient animals had lower (P ≤ 0.05) abundance of MTOR, p-MTOR, RPS6KB1, EIF2A, EEF2K, AKT1, and RPS6KB1, whereas MAPK3 tended (P = 0.07) to be lower. In contrast, abundance of p-EEF2K, p-EEF2K:EEF2K, and p-EIF2A:EIF2A in most-efficient animals was greater (P ≤ 0.05). Among proteins catalyzing steps required for protein degradation, the abundance of UBA1, NEDD4, and STUB1 was lower (P ≤ 0.05) and MDM2 tended (P = 0.06) to be lower in most-efficient cattle. Plasma insulin and ruminal epithelium insulin signaling proteins did not differ (P > 0.05) between RFI groups. However, abundance of the insulin-responsive glucose transporter SLC2A4 and the amino acid transporters SLC1A3 and SLC1A5 also was lower (P ≤ 0.05) in most-efficient cattle. Overall, the data indicate that differences in signaling mechanisms controlling protein turnover and nutrient transport in ruminal epithelium are components of feed efficiency in beef cattle.


1997 ◽  
Vol 127 (12) ◽  
pp. 2371-2376 ◽  
Author(s):  
Jean-François Gabarrou ◽  
Pierre-André Géraert ◽  
Michel Picard ◽  
André Bordas

2019 ◽  
Vol 32 (1) ◽  
pp. 14-20
Author(s):  
Estela Garza-Brenner ◽  
Ana M Sifuentes-Rincón ◽  
Felipe A Rodríguez Almeida ◽  
Ronald D Randel ◽  
G Manuel Parra-Bracamonte ◽  
...  

Background: The search for gene and marker effects on economically important traits is aimed not only to understanding the genetic architecture of complex traits but also to applying the information to breeding schemes. Objective: To analyze the effect of two temperament-related SNPs (rs109576799 located in the DRD3 gene, and rs43696138 in the HTR2A gene) on feeding performance of Mexican beef cattle. Methods: One hundred and thirty-six young beef bulls were included in a centralized feed efficiency performance test based on residual feed intake (RFI), with 20 d for adaptation and 70 d of feed efficiency testing. In addition to feeding traits, temperament was assessed at the beginning of the trial using pen score (PS) and exit velocity (EV). All animals were genotyped with two markers located in the HTR2A and DRD3 genes, and an association analysis was conducted between these genotypes and the measured traits. Results: For Brangus breed, a significant association was obtained between average daily gain (ADG; p=0.019), and the rs43696138 marker, resulting in higher gains for homozygous genotype GG (1.69 ± 0.04 kg), when compared to the heterozygous genotype GA (1.54 ± 0.04 kg). Conclusion: The previously reported association of these markers with temperament was not confirmed in the evaluated breeds; however, the rs43696138 marker showed an effect on a feeding performance trait. Further studies are needed to determine the effect of this and other markers on both RFI and temperament.Keywords: beef cattle, feed efficiency, residual feed intake, single nucleotide polymorphism, temperament.  Resumen Antecedentes: La búsqueda de efectos genéticos y marcadores de rasgos económicamente relevantes no solo se basa en el interés biológico de comprender la arquitectura genética de rasgos complejos, sino también en aplicar la información en los esquemas prácticos de mejoramiento. Objetivo: Analizar el efecto de dos SNPs relacionados con el temperamento (rs109576799 localizado en el gen DRD3, y rs43696138 localizado en el gen HTR2A) sobre la eficiencia alimenticia en el ganado bovino mexicano. Métodos: Ciento treinta y seis toretes de carne jóvenes fueron sometidos a una prueba de comportamiento alimenticio basada en el consumo residual de alimento (RFI), con 20 d de adaptación y 70 d de prueba para la eficiencia alimenticia. Además de los rasgos de comportamiento alimenticio, se evaluó el temperamento de los animales al inicio de la prueba, mediante la evaluación de comportamiento en el corral (PS), y la velocidad de salida (EV). Todas las muestras se tipificaron con dos marcadores localizados en los genes DRD3 y HTR2A para posteriormente realizar un análisis de asociación de los genotipos con los rasgos evaluados. Resultados: En la raza Brangus, se observó una asociación significativa de la media de ganancia diaria de peso (ADG, p=0,019) con el marcador rs43696138, localizado en el gen HTR2A, resultando en mayores ganancias para el genotipo GG (1,69 ± 0,04 kg) en comparación con los toros heterocigóticos GA (1,54 ± 0,04 kg). Conclusión: No se confirmó la asociación de estos marcadores previamente reportados con el temperamento en las razas evaluadas; sin embargo, el marcador rs43696138 mostró efecto en un rasgo de comportamiento alimenticio. Se necesitan más estudios para determinar el efecto de éste y otros marcadores en el consumo residual de alimento (RFI) y el temperamento.Palabras clave: consumo residual de alimento, eficiencia alimenticia, ganado de carne, polimorfismo de un solo nucleótido, temperamento.  Resumo Antecedentes: A busca de efeitos genéticos e marcadores de características economicamente relevantes não se baseia apenas no interesse biológico de compreender a arquitetura genética de traços complexos, mas também na aplicação da informação nos esquemas práticos de melhoria. Objetivo: Analisar o efeito de dois SNPs relacionados ao temperamento (rs109576799 localizado no gene DRD3 e rs43696138 localizado no gene HTR2A) sobre a eficiência nutricional no gado mexicano. Métodos: Cento e trinta e seis touros jovens foram submetidos a um teste de comportamento alimentar com base na entrada de alimentação residual (RFI), com 20 d de adaptação e 70 d de teste para eficiência de alimentação. Além dos traços de comportamento alimentar, o temperamento dos animais foi avaliado no início do teste, através da avaliação do comportamento na caneta (PS) e da velocidade de saída (EV). Todas as amostras foram digitadas com dois marcadores localizados nos genes DRD3 e HTR2A para posteriormente realizar uma análise de associação dos genótipos com os traços avaliados. Resultados: Na raça Brangus, observou-se uma associação significativa do ganho diário médio (ADG, p = 0,019) com o marcador rs43696138, localizado no gene HTR2A, resultando em maiores ganhos para o genótipo GG (1,69 ± 0,04 kg), em comparação com os touros heterozigóticos GA (1,54 ± 0,04 kg). Conclusão: A associação destes marcadores previamente relatados com o temperamento nas raças avaliadas não foi confirmada; no entanto, o marcador rs43696138 mostrou um efeito sobre uma característica de comportamento alimentar. Mais estudos são necessários para determinar o efeito deste e outros marcadores com ingestão alimentar residual (RFI) e temperamento.Palavras-chave: consumo residual de alimentos, eficiência alimentar, gado bovino, polimorfismo de nucleotídeo único, temperamento.


2018 ◽  
Vol 58 (1) ◽  
pp. 80 ◽  
Author(s):  
M. L. Hebart ◽  
J. M. Accioly ◽  
K. J. Copping ◽  
M. P. B. Deland ◽  
R. M. Herd ◽  
...  

Cow bodyweight gain, calf weaning weight, feed intake and maternal productivity of 500 Angus cows, in 64 replicate groups, were measured over three parities at two locations (Struan and Vasse) as part of the Beef CRC Maternal Productivity Project. The cows were sourced as heifers from the top and bottom 10% of BREEDPLAN Rib Fat EBV (High-Fat and Low-Fat), and from High and Low residual feed intake (RFI) selection lines (High-RFI and Low-RFI). Each of the four genotypes were run under High- and Low-Nutrition (measured as feed on offer) at both sites. The High-Fat cows were 7% more efficient at producing weaner calves under Low-Nutrition than were the Low-Fat cows. This was driven primarily by the 4% difference between the lines in weaning rate. When weaning rate differences were accounted for (as covariate), there was no difference between the Fat lines in the efficiency of weaner weight production. When the weight gain of the cow was included as an output in addition to calf weaning weight, there was also no difference between the Fat lines in efficiency. Low-RFI cows were always more efficient at producing weaner calves than were the High-RFI cows. This was primarily driven through a 7% reduction in annual feed intake (across both nutrition treatments). However, the Low-RFI cows were leaner, had 6.3% lower weaning rate and calved on average 5.4 days later than did the High-RFI cows. Furthermore, the largest differences in feed intake were in spring when feed availability is greatest. In the context of the results herein, a balanced breeding program should include selection for improved reproduction and low RFI.


2014 ◽  
Vol 159 ◽  
pp. 34-40 ◽  
Author(s):  
Jessica D. Colpoys ◽  
Caitlyn E. Abell ◽  
Jennifer M. Young ◽  
Aileen F. Keating ◽  
Nicholas K. Gabler ◽  
...  

2012 ◽  
Vol 78 (14) ◽  
pp. 4949-4958 ◽  
Author(s):  
Ciara A. Carberry ◽  
David A. Kenny ◽  
Sukkyan Han ◽  
Matthew S. McCabe ◽  
Sinead M. Waters

ABSTRACTFeed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations ofEntodiniumspp., protozoa,Fibrobacter succinogenes,Ruminococcus flavefaciens,Ruminococcus albus,Prevotella brevis, the genusPrevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed thatPrevotellaabundance was higher (P< 0.0001) in inefficient animals. A higher (P< 0.0001) abundance ofEntodiniumandPrevotellaspp. and a lower (P< 0.0001) abundance ofFibrobacter succinogeneswere observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.


2004 ◽  
Vol 44 (5) ◽  
pp. 431 ◽  
Author(s):  
E. C. Richardson ◽  
R. M. Herd

Experiments on Angus steer progeny following a single generation of divergent selection for residual feed intake suggest that there are many physiological mechanisms contributing to variation in residual feed intake. Difference in energy retained in protein and fat accounted for only 5% of the difference in residual feed intake following divergent selection. Differences in digestion contributed (conservatively) 10% and feeding patterns 2% to the variation in residual feed intake. The heat increment of feeding contributed 9% and activity contributed 10%. Indirect measures of protein turnover suggest that protein turnover, tissue metabolism and stress contributed to at least 37% of the variation in residual feed intake. About 27% of the difference in residual feed intake was due to variation in other processes such as ion transport, not yet measured. It is hypothesised that susceptibility to stress is a key driver for many of the biological differences observed following divergent selection for residual feed intake in beef cattle. Further research is required to accurately quantify the effect of selection for improved residual feed intake on protein turnover, tissue metabolism and ion transport, and to confirm the association between stress susceptibility and residual feed intake in beef cattle.


2004 ◽  
Vol 44 (5) ◽  
pp. 361 ◽  
Author(s):  
P. F. Arthur ◽  
J. A. Archer ◽  
R. M. Herd

In the last 10 years, there have been 3 major research and development projects in Australia on the efficiency of feed utilisation by beef cattle. The primary objective of these projects has been to examine individual animal variation in feed efficiency and its exploitation for genetic improvement in beef cattle. The results of these projects indicate that genetic variation in feed efficiency exists in Australian beef herds, that feed efficiency is moderately heritable and that the potential exists to reduce the cost of beef production through selection for efficient cattle. These results have been further developed for industry application through the generation of BREEDPLAN estimated breeding values for net (or residual) feed intake (a feed efficiency trait) for Angus and Hereford–Polled Hereford breeds. Although economic analyses have indicated substantial benefit from selection for feed efficiency, the high initial cost of identifying animals which are superior for feed efficiency is a barrier to rapid adoption of the technology. Developing cost-effective methods of implementing the feed efficiency technology is thus an on-going research activity. Challenges for the future include: the development and use of more sophisticated statistical analyses procedures (such as random regression) for feed intake and efficiency evaluation; development of accurate methods of assessing individual animal feed intake at pasture; the adoption of a whole-production system approach to feed utilisation; and better integration of the disciplines of genetics and nutrition. The outcomes from research in the efficiency of feed utilisation in beef cattle have wider applications, not only in other livestock species, but also in human energetics, such as the control of obesity.


2017 ◽  
Vol 47 (2) ◽  
Author(s):  
Giovanna Faria de Moraes ◽  
Luiza Rodrigues Alves Abreu ◽  
Isabel Cristina Ferreira ◽  
Idalmo Garcia Pereira

ABSTRACT: The study of the genetic evaluation of residual feed intake adjusted for fat (RFIFat) is important for the appropriate use of feed efficiency in selection programs. The objective was to analyze the influence of selection for RFIF at on carcass and performance traits by estimating various genetic parameters. Data were analyzed from five tests of feed efficiency, which were conducted with 677 Nellore males. Genetic evaluation was performed by Bayesian inference using an animal model via single- and two-trait analyses. Variables analyzed were dry matter intake, average daily gain, RFIFat, rib eye area, back fat thickness, rump fat thickness, marbling score, and subcutaneous fat thickness. The posterior mean distributions estimated at each analysis were used to estimate heritability of the traits and to perform various correlations. The studied traits showed high heritability estimates, and they should respond well to selection. The RFIFat presented a phenotypic correlation with carcass traits (which was next to zero), and there was also a negative genetic correlation. Additive genetic variability for RFIFat showed that selection for this trait can promote genetic gains in future generations, resulting in animals that are efficient in terms of nutrient use, and according to the genetic and phenotypic correlations, with no significant negative changes to carcass traits.


Sign in / Sign up

Export Citation Format

Share Document