scholarly journals MicroRNA Variants and HLA-miRNA Interactions are Novel Rheumatoid Arthritis Susceptibility Factors

2021 ◽  
Vol 12 ◽  
Author(s):  
Shicheng Guo ◽  
Yehua Jin ◽  
Jieru Zhou ◽  
Qi Zhu ◽  
Ting Jiang ◽  
...  

Genome-wide association studies have identified >100 genetic risk factors for rheumatoid arthritis. However, the reported genetic variants could only explain less than 40% heritability of rheumatoid arthritis. The majority of the heritability is still missing and needs to be identified with more studies with different approaches and populations. In order to identify novel function SNPs to explain missing heritability and reveal novel mechanism pathogenesis of rheumatoid arthritis, 4 HLA SNPs (HLA-DRB1, HLA-DRB9, HLA-DQB1, and TNFAIP3) and 225 common SNPs located in miRNA, which might influence the miRNA target binding or pre-miRNA stability, were genotyped in 1,607 rheumatoid arthritis and 1,580 matched normal individuals. We identified 2 novel SNPs as significantly associated with rheumatoid arthritis including rs1414273 (miR-548ac, OR = 0.84, p = 8.26 × 10−4) and rs2620381 (miR-627, OR = 0.77, p = 2.55 × 10−3). We also identified that rs5997893 (miR-3928) showed significant epistasis effect with rs4947332 (HLA-DRB1, OR = 4.23, p = 0.04) and rs2967897 (miR-5695) with rs7752903 (TNFAIP3, OR = 4.43, p = 0.03). In addition, we found that individuals who carried 8 risk alleles showed 15.38 (95%CI: 4.69–50.49, p < 1.0 × 10−6) times more risk of being affected by RA. Finally, we demonstrated that the targets of the significant miRNAs showed enrichment in immune related genes (p = 2.0 × 10−5) and FDA approved drug target genes (p = 0.014). Overall, 6 novel miRNA SNPs including rs1414273 (miR-548ac, p = 8.26 × 10−4), rs2620381 (miR-627, p = 2.55 × 10−3), rs4285314 (miR-3135b, p = 1.10 × 10−13), rs28477407 (miR-4308, p = 3.44 × 10−5), rs5997893 (miR-3928, p = 5.9 × 10−3) and rs45596840 (miR-4482, p = 6.6 × 10−3) were confirmed to be significantly associated with RA in a Chinese population. Our study suggests that miRNAs might be interesting targets to accelerate understanding of the pathogenesis and drug development for rheumatoid arthritis.

2020 ◽  
Author(s):  
Shicheng Guo ◽  
Yehua Jin ◽  
Jieru Zhou ◽  
Qi Zhu ◽  
Ting Jiang ◽  
...  

AbstractObjectiveAlthogh Genome-wide association studies have identified >100 variants for rheumatoid arthritis (RA),the reported genetic variants only explain <40% of RA heritability. We conducted a systemic association study between common East-Asian miRNA SNPs with RA in a large Han Chinese cohort to explain missing heritability and identify miRNA epistatic interactions.Methods4 HLA SNPs (HLA-DRB1, HLA-DRB9, HLA-DQB1 and TNFAIP3) and 225 common SNPs located in miRNA which might influence the miRNA target binding or pre-miRNA stability were genotyped in 1,607 rheumatoid arthritis and 1,580 matched normal individuals. A meta-analysis with previous GWAS studies (4,873 RA cases and 17,642 controls) was performed to discovery another novel miRNA RA-associated SNPs.Results2 novel SNPs including rs1414273 (miR-548ac, OR=0.84, P=8.26×10-4) and rs2620381 (miR-627, OR=0.77, P=2.55×10-3) conferred significant association with RA. Individuals carried 8 risk alleles showed 15.38 (95%CI: 4.69-50.49, P<1.0×10-6) times more risk to be affected by RA. In addition, rs5997893 (miR-3928) showed significant epistasis effect with rs4947332 (HLA-DRB1, OR=4.23, P=0.04) and rs2967897 (miR-5695) with rs7752903 (TNFAIP3, OR=4.43, P=0.03). Finally, we demonstrated targets of the significant miRNAs showed enrichment in immune related genes (P=2.0×10-5) and FDA approved drug target genes (P=0.014).Conclusions6 novel miRNA SNPs including rs1414273 (miR-548ac, P=8.26×10-4), rs2620381 (miR-627, P=2.55×10-3), rs4285314 (miR-3135b, P=1.10×10-13), rs28477407 (miR-4308, P=3.44×10-5), rs5997893 (miR-3928, P=5.9×10-3) and rs45596840 (miR-4482, P=6.6×10-3) were confirmed to be significantly associated with RA in a Chinese population. Our study suggests that miRNAs might be interesting targets to accelerate the understanding of the pathogenesis and drug development for rheumatoid arthritis.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009918
Author(s):  
Bernard Ng ◽  
William Casazza ◽  
Nam Hee Kim ◽  
Chendi Wang ◽  
Farnush Farhadi ◽  
...  

The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms.


Author(s):  
Tiit Nikopensius ◽  
Priit Niibo ◽  
Toomas Haller ◽  
Triin Jagomägi ◽  
Ülle Voog-Oras ◽  
...  

Abstract Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points• Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition.• Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe.• The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci.• The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e75951 ◽  
Author(s):  
Guiyou Liu ◽  
Yongshuai Jiang ◽  
Xiaoguang Chen ◽  
Ruijie Zhang ◽  
Guoda Ma ◽  
...  

2019 ◽  
Author(s):  
Jing Yang ◽  
Amanda McGovern ◽  
Paul Martin ◽  
Kate Duffus ◽  
Xiangyu Ge ◽  
...  

AbstractGenome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T-cells over 24 hours, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T-cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9.


2020 ◽  
Vol 79 (11) ◽  
pp. 1438-1445
Author(s):  
Young-Chang Kwon ◽  
Jiwoo Lim ◽  
So-Young Bang ◽  
Eunji Ha ◽  
Mi Yeong Hwang ◽  
...  

ObjectiveGenome-wide association studies (GWAS) in rheumatoid arthritis (RA) have discovered over 100 RA loci, explaining patient-relevant RA pathogenesis but showing a large fraction of missing heritability. As a continuous effort, we conducted GWAS in a large Korean RA case–control population.MethodsWe newly generated genome-wide variant data in two independent Korean cohorts comprising 4068 RA cases and 36 487 controls, followed by a whole-genome imputation and a meta-analysis of the disease association results in the two cohorts. By integrating publicly available omics data with the GWAS results, a series of bioinformatic analyses were conducted to prioritise the RA-risk genes in RA loci and to dissect biological mechanisms underlying disease associations.ResultsWe identified six new RA-risk loci (SLAMF6, CXCL13, SWAP70, NFKBIA, ZFP36L1 and LINC00158) with pmeta<5×10−8 and consistent disease effect sizes in the two cohorts. A total of 122 genes were prioritised from the 6 novel and 13 replicated RA loci based on physical distance, regulatory variants and chromatin interaction. Bioinformatics analyses highlighted potentially RA-relevant tissues (including immune tissues, lung and small intestine) with tissue-specific expression of RA-associated genes and suggested the immune-related gene sets (such as CD40 pathway, IL-21-mediated pathway and citrullination) and the risk-allele sharing with other diseases.ConclusionThis study identified six new RA-associated loci that contributed to better understanding of the genetic aetiology and biology in RA.


Sign in / Sign up

Export Citation Format

Share Document