scholarly journals Genome-Wide Identification and Low-Temperature Expression Analysis of bHLH Genes in Prunus mume

2021 ◽  
Vol 12 ◽  
Author(s):  
Aiqin Ding ◽  
Anqi Ding ◽  
Ping Li ◽  
Jia Wang ◽  
Tangren Cheng ◽  
...  

Prunus mume is an illustrious ornamental woody plant with colorful flowers, delicate fragrances, and graceful tree forms. Low temperature limits its geographical distribution. The basic helix-loop-helix (bHLH) proteins exist in most eukaryotes as a transcription factor superfamily, which play a crucial role in metabolism, physiology, development, and response to various stresses of higher organisms. However, the characteristics of the bHLH gene family and low-temperature response remain unknown in P. mume. In the present study, we distinguished 95 PmbHLH genes in the P. mume whole-genome and analyzed their features. PmbHLHs were divided into 23 subfamilies and one orphan by phylogenetic analysis. Similar gene structures and conserved motifs appeared in the same subfamily. These genes were situated in eight chromosomes and scaffolds. Gene duplication events performed a close relationship to P. mume, P. persica, and P. avium. Tandem duplications probably promoted the expansion of PmbHLHs. According to predicted binding activities, the PmbHLHs were defined as the Non-DNA-binding proteins and DNA-binding proteins. Furthermore, PmbHLHs exhibited tissue-specific and low-temperature induced expression patterns. By analyzing transcriptome data, 10 PmbHLHs which are responsive to low-temperature stress were selected. The qRT-PCR results showed that the ten PmbHLH genes could respond to low-temperature stress at different degrees. There were differences in multiple variations among different varieties. This study provides a basis to research the evolution and low-temperature tolerance of PmbHLHs, and might enhance breeding programs of P. mume by improving low-temperature tolerance.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Guowen Cui ◽  
Hua Chai ◽  
Hang Yin ◽  
Mei Yang ◽  
Guofu Hu ◽  
...  

Abstract Background Low temperature is one of the main environmental factors that limits crop growth, development, and production. Medicago falcata is an important leguminous herb that is widely distributed worldwide. M. falcata is related to alfalfa but is more tolerant to low temperature than alfalfa. Understanding the low temperature tolerance mechanism of M. falcata is important for the genetic improvement of alfalfa. Results In this study, we explored the transcriptomic changes in the roots of low-temperature-treated M. falcata plants by combining SMRT sequencing and NGS technologies. A total of 115,153 nonredundant sequences were obtained, and 8849 AS events, 73,149 SSRs, and 4189 lncRNAs were predicted. A total of 111,587 genes from SMRT sequencing were annotated, and 11,369 DEGs involved in plant hormone signal transduction, protein processing in endoplasmic reticulum, carbon metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and endocytosis pathways were identified. We characterized 1538 TF genes into 45 TF gene families, and the most abundant TF family was the WRKY family, followed by the ERF, MYB, bHLH and NAC families. A total of 134 genes, including 101 whose expression was upregulated and 33 whose expression was downregulated, were differentially coexpressed at all five temperature points. PB40804, PB75011, PB110405 and PB108808 were found to play crucial roles in the tolerance of M. falcata to low temperature. WGCNA revealed that the MEbrown module was significantly correlated with low-temperature stress in M. falcata. Electrolyte leakage was correlated with most genetic modules and verified that electrolyte leakage can be used as a direct stress marker in physiological assays to indicate cell membrane damage from low-temperature stress. The consistency between the qRT-PCR results and RNA-seq analyses confirmed the validity of the RNA-seq data and the analysis of the regulatory mechanism of low-temperature stress on the basis of the transcriptome. Conclusions The full-length transcripts generated in this study provide a full characterization of the transcriptome of M. falcata and may be useful for mining new low-temperature stress-related genes specific to M. falcata. These new findings could facilitate the understanding of the low-temperature-tolerance mechanism of M. falcata.


2018 ◽  
Vol 19 (9) ◽  
pp. 2579 ◽  
Author(s):  
Aimin Zhou ◽  
Enhui Liu ◽  
He Li ◽  
Yang Li ◽  
Shuang Feng ◽  
...  

Low temperature stress adversely affects plant growth and development. Isolation and characterization of cold response genes from cold-tolerant plants help to understand the mechanism underlying low temperature tolerance. In this study, PsCor413pm2, a cold-regulated (COR) gene isolated from Phlox subulata, was transferred to Arabidopsis plants to investigate its function. Real-time quantitative PCR analysis revealed that PsCor413pm2 expression was induced by cold. Subcellular localization revealed that the PsCor413pm2-green fluorescent protein (GFP) fusion protein localized to the plasma membrane in tobacco and Arabidopsis plants. Furthermore, overexpression of PsCor413pm2 in Arabidopsis plants enhanced tolerance to low temperature stress. Transgenic Arabidopsis roots had more influx of Ca2+ after a cold shock than wild-type plants, as shown using non-invasive micro-test technology (NMT). Moreover, the transcription abundance of five COR and two C-repeat (CRT) binding factor (CBF) genes in transgenic Arabidopsis plants was higher than that in the wild-type plants under cold stress. Taken together, our results suggest that overexpression of PsCor413pm2 enhances low temperature tolerance in Arabidopsis plants by affecting Ca2+ flux and the expression of stress-related COR and CBF genes.


2013 ◽  
Vol 726-731 ◽  
pp. 118-121
Author(s):  
Rui Mei Li ◽  
Du Juan Xi ◽  
Yi Meng Ji ◽  
Rui Jun Duan ◽  
Jiao Liu ◽  
...  

We have constructed a vector pCAMBIA1300-CP:CBF3-35S:ICE1 and transformed into Arabidopsis. Results of PCR proved that the target genes had integrated into Arabidopsis genome. Transgenic Arabidopsis showed a bit slow growth, earlier flowering, but normal at other phenotype under 22°C with 8 h daily lights. In vitro low temperature stress tests showed that the transgenic lines were survival while the wild type was nearly dead. The transgenic plants also showed an increased proline content, SOD and POD activities under low temperature stress. The phenotype and physical evidence indicated that expression of CP:CBF3-35S:ICE1 under low temperature enhances the cold tolerance in transgenic plants.


Author(s):  
QingJian Liang ◽  
WenNa Dong ◽  
MuFei Ou ◽  
ZhongHua Li ◽  
Can Liu ◽  
...  

MicroRNAs (miRNAs) play key roles in many physiologic and pathologic processes, including autophagy. Autophagy is cellular in an emergency response mechanism of environment stress, but their complex molecular regulatory mechanism under low-temperature stress is largely unknown in shrimp, especially miRNA-mediated regulation of autophagy in low-temperature tolerance. In this article, a shrimp PvTOR and miRNA pva-miR-151 cooperation in response to low-temperature stress has been reported. Pva-miR-151 showed expression patterns opposite to target PvTOR under low-temperature stress. The pva-miR-151 targets the 3′-UTR region of PvTOR, regulate the formation of autophagosome, which contribute to the degradation and recycling of damaged organelles. In addition, the low-temperature tolerance was correlated positively with autophagy in shrimp. Silenced pva-miR-151 increased sensitivity to low-temperature stress, whereas overexpression pva-miR-151 decreased the expression of PvTOR and p-TOR and increased tolerance to low-temperature stress by improving the formation of autophagosome and total hemocyte count. In addition, the TOR activator 3BDO can partially rescue autophagy induced by overexpression of pva-miR-151; these results indicate that miR-151 was necessary for the low-temperature tolerance in shrimp. Taken together, we provide a novel strategy and mechanism for shrimp breeding to improve shrimp low-temperature tolerance.


2019 ◽  
Author(s):  
Guowen Cui ◽  
Hua Chai ◽  
Hang Yin ◽  
Mei Yang ◽  
Guofu Hu ◽  
...  

Abstract Background Low temperature is one of the main environmental factors that limits crop growth, development and production. Medicago falcata is an economically and ecologically important legume that is closely related to alfalfa and exhibits better tolerance to low temperature than alfalfa. Understanding the low-temperature-tolerance mechanism of M. falcata is important for the genetic improvement of alfalfa. Results In this study, we explored the transcriptomic changes in low-temperature-treated M. falcata roots by combining SMRT and NGS technologies. A total of 115,153 nonredundant sequences were obtained, and 8,849 AS events, 73,149 SSRs and 4,189 LncRNAs were predicted. A total of 111,587 genes from SMRT were annotated, and 11,369 DEGs were identified in this paper that are involved in plant hormone signal transduction, protein processing in endoplasmic reticulum, carbon metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and endocytosis pathways. We characterized 1,538 TF genes into 45 TF gene families, and the most abundant TF family was WRKY, followed by ERF, MYB, bHLH and NAC. A total of 134 genes were differentially coexpressed at all five temperature points, including 101 upregulated genes and 33 downregulated genes. PB40804, PB75011, PB110405 and PB108808 were found to play crucial roles in the tolerance of M. falcata to low temperature. The WGCNA results showed that the MEbrown module was significantly correlated with low-temperature stress in M. falcata. Electrolyte leakage was correlated with most genetic modules and corroborated that electrolyte leakage can be used as direct stress markers to reflect cell membrane damage from low-temperature stress in physiological assays. The consistency between the qRT-PCR results and RNA-Seq analyses confirm the validity of the RNA-Seq data and the analysis of the regulation of low-temperature stress in the transcriptome. Conclusions The full-length transcripts generated in this study provided a full characterization of the gene transcription of M. falcata and are useful for mining new low-temperature stress-related genes specific to M. falcata. These new findings facilitate the understanding of low-temperature-tolerance mechanisms in M. falcata.


2019 ◽  
Author(s):  
Guowen Cui ◽  
Hua Chai ◽  
Hang Yin ◽  
Mei Yang ◽  
Guofu Hu ◽  
...  

Abstract Background: Low temperature is one of the main environmental factors that limits crop growth, development, and production. Medicago falcata is an important leguminous herb that is widely distributed worldwide. M. falcata is related to alfalfa but is more tolerant to low temperature than alfalfa. Understanding the low temperature tolerance mechanism of M. falcata is important for the genetic improvement of alfalfa. Results: In this study, we explored the transcriptomic changes in the roots of low-temperature-treated M. falcata plants by combining SMRT sequencing and NGS technologies. A total of 115,153 nonredundant sequences were obtained, and 8,849 AS events, 73,149 SSRs, and 4,189 lncRNAs were predicted. A total of 111,587 genes from SMRT sequencing were annotated, and 11,369 DEGs involved in plant hormone signal transduction, protein processing in endoplasmic reticulum, carbon metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and endocytosis pathways were identified. We characterized 1,538 TF genes into 45 TF gene families, and the most abundant TF family was the WRKY family, followed by the ERF, MYB, bHLH and NAC families. A total of 134 genes, including 101 whose expression was upregulated and 33 whose expression was downregulated, were differentially coexpressed at all five temperature points. PB40804, PB75011, PB110405 and PB108808 were found to play crucial roles in the tolerance of M. falcata to low temperature. WGCNA revealed that the MEbrown module was significantly correlated with low-temperature stress in M. falcata. Electrolyte leakage was correlated with most genetic modules and verified that electrolyte leakage can be used as a direct stress marker in physiological assays to indicate cell membrane damage from low-temperature stress. The consistency between the qRT-PCR results and RNA-seq analyses confirmed the validity of the RNA-seq data and the analysis of the regulatory mechanism of low-temperature stress on the basis of the transcriptome. Conclusions: The full-length transcripts generated in this study provide a full characterization of the transcriptome of M. falcata and may be useful for mining new low-temperature stress-related genes specific to M. falcata. These new findings could facilitate the understanding of the low-temperature-tolerance mechanism of M. falcata.


Sign in / Sign up

Export Citation Format

Share Document