scholarly journals Recent Advances in Lupus B Cell Biology: PI3K, IFNγ, and Chromatin

2021 ◽  
Vol 11 ◽  
Author(s):  
Maria A. Bacalao ◽  
Anne B. Satterthwaite

In the autoimmune disease Systemic Lupus Erythematosus (SLE), autoantibodies are formed that promote inflammation and tissue damage. There has been significant interest in understanding the B cell derangements involved in SLE pathogenesis. The past few years have been particularly fruitful in three domains: the role of PI3K signaling in loss of B cell tolerance, the role of IFNγ signaling in the development of autoimmunity, and the characterization of changes in chromatin accessibility in SLE B cells. The PI3K pathway coordinates various downstream signaling molecules involved in B cell development and activation. It is governed by the phosphatases PTEN and SHIP-1. Murine models lacking either of these phosphatases in B cells develop autoimmune disease and exhibit defects in B cell tolerance. Limited studies of human SLE B cells demonstrate reduced expression of PTEN or increased signaling events downstream of PI3K in some patients. IFNγ has long been known to be elevated in both SLE patients and mouse models of lupus. New data suggests that IFNγR expression on B cells is required to develop autoreactive germinal centers (GC) and autoantibodies in murine lupus. Furthermore, IFNγ promotes increased transcription of BCL6, IL-6 and T-bet in B cells, which also promote GC and autoantibody formation. IFNγ also induces epigenetic changes in human B cells. SLE B cells demonstrate significant epigenetic reprogramming, including enhanced chromatin accessibility at transcription factor motifs involved in B cell activation and plasma cell (PC) differentiation as well as alterations in DNA methylation and histone modifications. Histone deacetylase inhibitors limit disease development in murine lupus models, at least in part via their ability to prevent B cell class switching and differentiation into plasma cells. This review will discuss relevant discoveries of the past several years pertaining to these areas of SLE B cell biology.

2005 ◽  
Vol 201 (10) ◽  
pp. 1659-1667 ◽  
Author(s):  
Jonathan Samuels ◽  
Yen-Shing Ng ◽  
Claire Coupillaud ◽  
Daniel Paget ◽  
Eric Meffre

Autoantibody production is a characteristic of most autoimmune diseases including rheumatoid arthritis (RA). The role of these autoantibodies in the pathogenesis of RA remains elusive, but they appear in the serum many years before the onset of clinical disease suggesting an early break in B cell tolerance. The stage of B cell development at which B cell tolerance is broken in RA remains unknown. We previously established in healthy donors that most polyreactive developing B cells are silenced in the bone marrow, and additional autoreactive B cells are removed in the periphery. B cell tolerance in untreated active RA patients was analyzed by testing the specificity of recombinant antibodies cloned from single B cells. We find that autoreactive B cells fail to be removed in all six RA patients and represent 35–52% of the mature naive B cell compartment compared with 20% in healthy donors. In some patients, RA B cells express an increased proportion of polyreactive antibodies that can recognize immunoglobulins and cyclic citrullinated peptides, suggesting early defects in central B cell tolerance. Thus, RA patients exhibit defective B cell tolerance checkpoints that may favor the development of autoimmunity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 997-997
Author(s):  
Yongwei Zheng ◽  
Mei Yu ◽  
Yuhong Chen ◽  
Liquan Xue ◽  
Wen Zhu ◽  
...  

Abstract The CARD11-Bcl10-Malt1 (CBM) signalosome controls TAK1 activation to regulate B-cell receptor (BCR)-induced NF-κB activation and B cell biology. The biological function of caspase recruitment domain family member 19 (CARD19), originally identified as a BCL10-interacting CARD protein (BinCARD), is not known. Here we found CARD19 strongly interacted with TAK1 but not BCL10 or other CBM components and prevented TAK1's association with TAB2, thereby inhibiting TAB2-mediated TAK1 ubiquitination and activation and subsequent NF-κB activation. CARD19 was ubiquitously expressed in hematopoietic lineages but its deficiency in mice had no effect on hematopoiesis, including B cell development and humoral immune response. CARD19 deficiency enhanced clonal deletion, receptor editing and anergy of self-reactive B cells, thus reducing autoantibody production in vivo. Mechanistically, CARD19 deficiency led to an increase of BCR/TAK1-mediated NF-κB activation. Activation of NF-κB, such as c-Rel, was responsible for the up-regulation of BCR-induced expression of the transcription factor early growth response genes 2 and 3 (Egr2, Egr3) and the E3 ubiquitin ligases, c-Cbl and Cbl-b, the important inducers of B-cell tolerance in B cells. Further, high-throughput RNA sequencing analysis revealed that CARD19 deficiency did not affect the overall antigen-induced gene expression in naïve B cells but suppressed BCR signaling to increase hyporesponsiveness of self-reactive B cells. Consequently, CARD19 deficiency prevented Bm12-induced experimental systemic lupus erythematosus (SLE) and autoimmunity in a B cell-intrinsic manner. Taken together, CARD19 negatively regulates BCR-induced NF-κB activation via blocking TAK1/TAB2 interaction and its deficiency leads to NF-κB-induced expression of Egr2/3 and c-Cbl/Cbl-b in self-reactive B cells, which enhances B-cell tolerance and thus prevents autoimmunity. Disclosures No relevant conflicts of interest to declare.


1980 ◽  
Vol 152 (3) ◽  
pp. 730-735 ◽  
Author(s):  
E A Goldings ◽  
P L Cohen ◽  
S F McFadden ◽  
M Ziff ◽  
E S Vitetta

Hapten-specific tolerance was induced in vitro by trinitrophenyl-human gamma globulin (TNP32HGG) to a comparable degree in B cells from adult autoimmune (NZB X NZW)F1 (B/W) mice and normal BDF1, CBA/J, and DBA/1J mice. When a lower epitope density tolerogen (TNP7HGG) was used, B/W mice were significantly less sensitive than normal mice to the induction of B cell tolerance. This finding of defective B cell tolerance in adult B/W mice is consistent with previous reports that document other B cell abnormalities that may relate to the expression of autoimmune disease.


2021 ◽  
Vol 118 (16) ◽  
pp. e2021570118
Author(s):  
Thiago Alves da Costa ◽  
Jacob N. Peterson ◽  
Julie Lang ◽  
Jeremy Shulman ◽  
Xiayuan Liang ◽  
...  

Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.


2019 ◽  
Vol 216 (5) ◽  
pp. 1135-1153 ◽  
Author(s):  
Sarah A. Greaves ◽  
Jacob N. Peterson ◽  
Pamela Strauch ◽  
Raul M. Torres ◽  
Roberta Pelanda

Autoreactive B cells that bind self-antigen with high avidity in the bone marrow undergo mechanisms of central tolerance that prevent their entry into the peripheral B cell population. These mechanisms are breached in many autoimmune patients, increasing their risk of B cell–mediated autoimmune diseases. Resolving the molecular pathways that can break central B cell tolerance could therefore provide avenues to diminish autoimmunity. Here, we show that B cell–intrinsic expression of a constitutively active form of PI3K-P110α by high-avidity autoreactive B cells of mice completely abrogates central B cell tolerance and further promotes these cells to escape from the bone marrow, differentiate in peripheral tissue, and undergo activation in response to self-antigen. Upon stimulation with T cell help factors, these B cells secrete antibodies in vitro but remain unable to secrete autoantibodies in vivo. Overall, our data demonstrate that activation of the PI3K pathway leads high-avidity autoreactive B cells to breach central, but not late, stages of peripheral tolerance.


1998 ◽  
Vol 188 (5) ◽  
pp. 909-917 ◽  
Author(s):  
Jennifer A. Kench ◽  
David M. Russell ◽  
David Nemazee

Peripheral B cell tolerance was studied in mice of the autoimmune-prone, Fas-deficient MRL/ lpr.H-2d genetic background by introducing a transgene that directs expression of membrane-bound H-2Kb antigen to liver and kidney (MT-Kb) and a second transgene encoding antibody reactive with this antigen (3-83μδ, anti-Kk,b). Control immunoglobulin transgenic (Ig-Tg) MRL/lpr.H-2d mice lacking the Kb antigen had large numbers of splenic and lymph node B cells bearing the transgene-encoded specificity, whereas B cells of the double transgenic (Dbl-Tg) MRL/lpr.H-2d mice were deleted as efficiently as in Dbl-Tg mice of a nonautoimmune B10.D2 genetic background. In spite of the severely restricted peripheral B cell repertoire of the Ig-Tg MRL/lpr.H-2d mice, and notwithstanding deletion of the autospecific B cell population in the Dbl-Tg MRL/lpr.H-2d mice, both types of mice developed lymphoproliferation and exhibited elevated levels of IgG anti-chromatin autoantibodies. Interestingly, Dbl-Tg MRL/lpr.H-2d mice had a shorter lifespan than Ig-Tg MRL/lpr.H-2d mice, apparently as an indirect result of their relative B cell lymphopenia. These data suggest that in MRL/lpr mice peripheral B cell tolerance is not globally defective, but that certain B cells with receptors specific for nuclear antigens are regulated differently than are cells reactive to membrane autoantigens.


Sign in / Sign up

Export Citation Format

Share Document