scholarly journals High Content Image Analysis as a Tool to Morphologically Distinguish Macrophage Activation and Determine Its Importance for Foamy Alveolar Macrophage Responses

2021 ◽  
Vol 12 ◽  
Author(s):  
Ewelina Hoffman ◽  
Paulina Napieralska ◽  
Rhamiya Mahendran ◽  
Darragh Murnane ◽  
Victoria Hutter

IntroductionLung diseases are an increasing global health burden affecting millions of people worldwide. Only a few new inhaled medicines have reached the market in the last 30 years, in part due to foamy alveolar macrophage (FAM) responses observed in pre-clinical rat studies. The induction mechanism and signaling pathways involved in the development of highly vacuolated ‘foamy’ phenotype is not known. Furthermore, it has not been determined if these observations are adaptive or adverse responses.AimTo determine if high content image analysis techniques can distinguish between alveolar macrophage activation (LPS/IFN-γ activated and IL-4 activated macrophages) and if this could be applied to understanding the generation of ‘foamy’ macrophage phenotypes.MethodsNR8383 rat alveolar macrophages were stimulated with a mix of cytokines (LPS/IFN-γ or IL-4) for 24 h. The cells were further exposed to FAM inducing-compounds amiodarone and staurosporine. Following 24 h incubation, phagocytosis and lipid accumulation were measured using flow cytometry and high content image analysis techniques. The alveolar macrophages responses after exposure to cytokines were assessed by evaluation: (i) cell surface and biochemical markers such as: nitric oxide production, arginase-1 activity and MRC-1 receptor expression (ii) cellular morphology (iii) cellular functionality (phagocytic activity and lipids accumulation).ResultsMacrophages activated with LPS/IFN-γ showed distinct morphological (increased vacuolation) features and functionality (increased lipidosis, decreased phagocytic activity). Foamy macrophage phenotypes induced by amiodarone also displayed characteristics of proinflammatory macrophages (significantly increased nitric oxide production, increased vacuolation and lipidosis and decreased phagocytosis). In contrast, staurosporine treatment resulted in increased NO production, as well as arginase-1 activity.ConclusionHigh content image analysis was able to determine distinct differences in morphology between non-activated and LPS/IFN-γ activated macrophages, characterized by increased vacuolation and lipidosis. When exposed to compounds that induce a FAM phenotype, healthy non-activated macrophages displayed proinflammatory (amiodarone) or pro-apoptotic (staurosporine) characteristics but these responses were independent of a change in activation status. This technique could be applied in early drug discovery safety assessment to identify immune responses earlier and increase the understanding of alveolar macrophage responses to new molecules challenge in development of new inhalation therapies, which in turn will enhance decision-making in an early safety assessment of novel drug candidates.

Author(s):  
Mukhil Azhagan M. S ◽  
Dhwani Mehta ◽  
Hangwei Lu ◽  
Sudarshan Agrawal ◽  
Mark Tehranipoor ◽  
...  

Abstract Globalization and complexity of the PCB supply chain has made hardware assurance a challenging task. An automated system to extract the Bill of Materials (BoM) can save time and resources during the authentication process, however, there are numerous imaging modalities and image analysis techniques that can be used to create such a system. In this paper we review different imaging modalities and their pros and cons for automatic PCB inspection. In addition, image analysis techniques commonly used for such images are reviewed in a systematic way to provide a direction for future research in this area. Index Terms—Component Detection, PCB, Authentication, Image Analysis, Machine Learning


Agriculture ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 112 ◽  
Author(s):  
Andrzej Przybylak ◽  
Radosław Kozłowski ◽  
Ewa Osuch ◽  
Andrzej Osuch ◽  
Piotr Rybacki ◽  
...  

This paper describes the research aimed at developing an effective quality assessment method for potato tubers using neural image analysis techniques. Nowadays, the methods used to identify damage and diseases are time-consuming, require specialized knowledge, and often rely on subjective judgment. This study showed the use of the developed neural model as a tool supporting the evaluation of potato tubers during the sorting process in the storage room.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Cinthia C. Stempin ◽  
Laura R. Dulgerian ◽  
Vanina V. Garrido ◽  
Fabio M. Cerban

A type 1 cytokine-dependent proinflammatory response inducing classically activated macrophages (CaMϕs) is crucial for parasite control during protozoan infections but can also contribute to the development of immunopathological disease symptoms. Type 2 cytokines such as IL-4 and IL-13 antagonize CaMϕs inducing alternatively activated macrophages (AaMϕs) that upregulate arginase-1 expression. During several infections, induction of arginase-1-macrophages was showed to have a detrimental role by limiting CaMϕ-dependent parasite clearance and promoting parasite proliferation. Additionally, the role of arginase-1 in T cell suppression has been explored recently. Arginase-1 can also be induced by IL-10 and transforming growth factor-β(TGF-β) or even directly by parasites or parasite components. Therefore, generation of alternative activation states of macrophages could limit collateral tissue damage because of excessive type 1 inflammation. However, they affect disease outcome by promoting parasite survival and proliferation. Thus, modulation of macrophage activation may be instrumental in allowing parasite persistence and long-term host survival.


Author(s):  
Grimur Tomasson ◽  
Gisli Kristjan Olafsson ◽  
Hlynur Sigurporsson ◽  
Bjorn Por Jonsson ◽  
Kristjan Runarsson ◽  
...  

2021 ◽  
Vol 69 (10) ◽  
pp. 627-631
Author(s):  
Abigail R. Bland ◽  
John C. Ashton

Histochemistry of tumor sections is a widely employed technique utilized to examine cell death in preclinical xenograft animal models of cancer. However, this is under the assumption that tumors are homogeneous, leading to practices such as automatic cell counting across the entire section. We have noted that in our experiments the core of the tumor is largely or partially necrotic, and lacks evidence of vascularization (in contrast to the outer areas of the tumor). We note that this can bias and confound immunohistochemical analyses that do not take care to sample areas of interest in a way to take this into account. Design-based stereology with image analysis techniques is an alternative process that could be used to measure the volume of the necrotic region compared to the volume of the whole tumor.


2021 ◽  
Vol 9 (1) ◽  
pp. 1406-1412
Author(s):  
K. Santhi, A. Rama Mohan Reddy

Cardiovascular disease (CVD) is one of the critical diseases and the most common cause of morbidity and mortality worldwide. Therefore, early detection and prediction of such a disease is extremely essential for a healthy life. Cardiac imaging plays an important role in the diagnosis of cardiovascular disease but its role has been limited to visual assessment of heart structure and its function. However, with the advanced techniques and tools of big data and machine learning, it become easier to clinician to diagnose the CVD. Stenosis with in the Coronary Arteries (CA) are often determined by using the Coronary Cine Angiogram (CCA). It comes under the invasive image modality. CCA is the effective method to detect and predict the stenosis. In this paper a coronary analysis automation method is proposed in disease diagnosis. The proposed method includes pre-processing, segmentation, identifying vessel path and statistical analysis.


Sign in / Sign up

Export Citation Format

Share Document