scholarly journals The Effects of Helicobacter pylori Infection on Microbiota Associated With Gastric Mucosa and Immune Factors in Children

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zheng ◽  
Jing Miao ◽  
Lingling Luo ◽  
Gao Long ◽  
Bo Chen ◽  
...  

BackgroundHelicobacter pylori infection is the main cause of chronic gastritis in children. Little is known about the effect of Helicobacter pylori on microbiota and immunity. This study was aimed at characterizing stomach microbiota and immune-regulatory properties of children with Helicobacter pylori colonization.MethodsWe studied 122 children who had undergone gastric endoscopy due to gastrointestinal symptoms, 57 were diagnosed with Helicobacter pylori infection. Endoscopic mucosal biopsy samples were obtained for DNA and RNA extraction. Microbiomes were analyzed by 16S rRNA profiling, with the differentially expressed genes analyzed using RNA sequencing. The RNA-sequencing results of selected genes were validated by qRT-PCR.ResultsBacterial diversity of Helicobacter pylori-positive gastric specimens were lower than those of negative, and both groups were clearly separated according to beta diversity. Helicobacter pylori-positive group significantly reduced proportions of six phyla and eight genera; only Helicobacter taxa were more abundant in Helicobacter pylori-negative group. Gastric tissues RNA sequencing showed increased expression of multiple immune response genes in Helicobacter pylori -infection. Helicobacter pylori -infected children with restructured gastric microbiota had higher levels of FOXP3, IL-10, TGF-β1 and IL-17A expressions, which were consistent with increased CD4+T cell and macrophagocyte, compared with non-infected children.ConclusionsPresence of Helicobacter pylori significantly influences gastric microbiota and results in lower abundance of multiple taxonomic levels in children. Meanwhile, it affects gastric immune environment and promotes the occurrence of gastritis.Clinical Trial Registration[http://www.chictr.org.cn], identifier [ChiCTR1800015190]

2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199651
Author(s):  
Jie Yang ◽  
Enzi Feng ◽  
Yanxin Ren ◽  
Shun Qiu ◽  
Liufang Zhao ◽  
...  

Objectives To identify key long non-coding (lnc)RNAs responsible for the epithelial–mesenchymal transition (EMT) of CNE1 nasopharyngeal carcinoma cells and to investigate possible regulatory mechanisms in EMT. Methods CNE1 cells were divided into transforming growth factor (TGF)-β1-induced EMT and control groups. The mRNA and protein expression of EMT markers was determined by real-time quantitative PCR and western blotting. Differentially expressed genes (DEGs) between the two groups were identified by RNA sequencing analysis, and DEG functions were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. EMT marker expression was re-evaluated by western blotting after knockdown of a selected lncRNA. Results TGF-β1-induced EMT was characterized by decreased E-cadherin and increased vimentin, N-cadherin, and Twist expression at both mRNA and protein levels. Sixty lncRNA genes were clustered in a heatmap, and mRNA expression of 14 dysregulated lncRNAs was consistent with RNA sequencing. Knockdown of lnc-PNRC2-1 increased expression of its antisense gene MYOM3 and reduced expression of EMT markers, resembling treatment with the TGF-β1 receptor inhibitor LY2109761. Conclusion Various lncRNAs participated indirectly in the TGF-β1-induced EMT of CNE1 cells. Lnc-PNRC2-1 may be a key regulator of this and is a potential target to alleviate CNE1 cell EMT.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii349-iii350
Author(s):  
Torsten Pietsch ◽  
Christian Vokuhl ◽  
Gerrit H Gielen ◽  
Andre O von Bueren ◽  
Everlyn Dörner ◽  
...  

Abstract INTRODUCTION Glioblastoma in infancy and early childhood is characterized by a more favorable outcome compared to older children, a stable genome, and the occurrence of tyrosine kinase gene fusions that may represent therapeutic targets. METHODS 50 glioblastomas (GBM) with supratentorial location occurring in children younger than four years were retrieved from the archives of the Brain Tumor Reference Center, Institute of Neuropathology, University of Bonn. DNA and RNA were extracted from FFPE tumor samples. Gene fusions were identified by FISH using break-apart probes for ALK, NTRK1, -2, -3, ROS1 and MET, Molecular Inversion Probe (MIP) methodology, and targeted RNA sequencing. RESULTS 37 supratentorial GBM occurred in the first year of life, 13 GBM between one and four years. 18 cases showed fusions of ALK to different fusion partners; all occurred in the first year of life (18/37 cases, 48.6%). Fusions of ROS1 were found in 5, MET in 3, NTRK1, -2, -3 in 10 cases. 12 cases showed no and two novel fusions. The different methods led to comparable results; targeted RNA sequencing was not successful in a fraction of cases. Break-apart FISH led to reliable results on the next day, MIP technology represented the most sensitive method for analysis of FFPE samples. CONCLUSIONS Gene fusions involving the tyrosine kinase genes ALK, MET, ROS1 and NTRK1, -2, -3 occurred in 72% of glioblastomas of children younger than four years; the most frequent were ALK fusions occurring in infant GBM. DNA based MIP technology represented the most robust and sensitive assay.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michal Marczyk ◽  
Chunxiao Fu ◽  
Rosanna Lau ◽  
Lili Du ◽  
Alexander J. Trevarton ◽  
...  

Abstract Background Utilization of RNA sequencing methods to measure gene expression from archival formalin-fixed paraffin-embedded (FFPE) tumor samples in translational research and clinical trials requires reliable interpretation of the impact of pre-analytical variables on the data obtained, particularly the methods used to preserve samples and to purify RNA. Methods Matched tissue samples from 12 breast cancers were fresh frozen (FF) and preserved in RNAlater or fixed in formalin and processed as FFPE tissue. Total RNA was extracted and purified from FF samples using the Qiagen RNeasy kit, and in duplicate from FFPE tissue sections using three different kits (Norgen, Qiagen and Roche). All RNA samples underwent whole transcriptome RNA sequencing (wtRNAseq) and targeted RNA sequencing for 31 transcripts included in a signature of sensitivity to endocrine therapy. We assessed the effect of RNA extraction kit on the reliability of gene expression levels using linear mixed-effects model analysis, concordance correlation coefficient (CCC) and differential analysis. All protein-coding genes in the wtRNAseq and three gene expression signatures for breast cancer were assessed for concordance. Results Despite variable quality of the RNA extracted from FFPE samples by different kits, all had similar concordance of overall gene expression from wtRNAseq between matched FF and FFPE samples (median CCC 0.63–0.66) and between technical replicates (median expression difference 0.13–0.22). More than half of genes were differentially expressed between FF and FFPE, but with low fold change (median |LFC| 0.31–0.34). Two out of three breast cancer signatures studied were highly robust in all samples using any kit, whereas the third signature was similarly discordant irrespective of the kit used. The targeted RNAseq assay was concordant between FFPE and FF samples using any of the kits (CCC 0.91–0.96). Conclusions The selection of kit to purify RNA from FFPE did not influence the overall quality of results from wtRNAseq, thus variable reproducibility of gene signatures probably relates to the reliability of individual gene selected and possibly to the algorithm. Targeted RNAseq showed promising performance for clinical deployment of quantitative assays in breast cancer from FFPE samples, although numerical scores were not identical to those from wtRNAseq and would require calibration.


2021 ◽  
Author(s):  
David A. Wheeler ◽  
Scott Newman ◽  
Joy Nakitandwe ◽  
Chimene A. Kesserwan ◽  
Elizabeth M. Azzato ◽  
...  

2014 ◽  
Vol 67 (11) ◽  
pp. 923-931 ◽  
Author(s):  
Ian A Cree ◽  
Zandra Deans ◽  
Marjolijn J L Ligtenberg ◽  
Nicola Normanno ◽  
Anders Edsjö ◽  
...  

Molecular testing is becoming an important part of the diagnosis of any patient with cancer. The challenge to laboratories is to meet this need, using reliable methods and processes to ensure that patients receive a timely and accurate report on which their treatment will be based. The aim of this paper is to provide minimum requirements for the management of molecular pathology laboratories. This general guidance should be augmented by the specific guidance available for different tumour types and tests. Preanalytical considerations are important, and careful consideration of the way in which specimens are obtained and reach the laboratory is necessary. Sample receipt and handling follow standard operating procedures, but some alterations may be necessary if molecular testing is to be performed, for instance to control tissue fixation. DNA and RNA extraction can be standardised and should be checked for quality and quantity of output on a regular basis. The choice of analytical method(s) depends on clinical requirements, desired turnaround time, and expertise available. Internal quality control, regular internal audit of the whole testing process, laboratory accreditation, and continual participation in external quality assessment schemes are prerequisites for delivery of a reliable service. A molecular pathology report should accurately convey the information the clinician needs to treat the patient with sufficient information to allow for correct interpretation of the result. Molecular pathology is developing rapidly, and further detailed evidence-based recommendations are required for many of the topics covered here.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4659-4659
Author(s):  
Ian Duncan ◽  
Natalie Danziger ◽  
Daniel Duncan ◽  
Amanda Hemmerich ◽  
Claire Edgerly ◽  
...  

BACKGROUND: Comprehensive genomic profiling (CGP) performed by next-generation sequencing of DNA detects genomic alterations including point mutations, insertions/deletions, copy number variations, and select gene rearrangements. When RNA sequencing is included in CGP, it allows for expanded detection of gene fusions, which are common in hematologic malignancies and sarcomas. When such tumors involve bone, a decalcification step is frequently employed to soften tissues prior to processing and sectioning. While commonly used acid-based decalcification methods work quickly, the resulting nucleic acid damage can be profound. In this study, we examine the effects of decalcification on DNA and RNA sequencing in the clinical setting. DESIGN: 1711 consecutive formalin-fixed paraffin embedded samples were evaluated by CGP during routine clinical care via DNA and RNA sequencing, using a hybrid-capture next-generation sequencing assay (FoundationOne®Heme). Specimen site [e.g. bone/ bone marrow or soft tissue] and decalcification status were extracted from pathology reports and H&E review. Samples were considered decalcified if reported as such in the pathology report or if visible decalcified bone was present on the H&E. Samples documented to be processed with fixatives other than formalin were excluded. Sequencing failures were defined as samples that failed DNA extraction (DNAx), RNA extraction (RNAx), or library construction (LC) due to insufficient nucleic acid to advance into sequencing. Samples were only evaluated for RNA if DNAx was successful (1594 cases). RESULTS: Specimen site was a strong predictor of sequencing failure, with a significant increase in failure rate from bone/bone marrow samples (n=619) compared to samples from soft tissue sites (n=1092) for both DNA (13.4% vs 4.6%, p=4.7E-9) and RNA (42.5% vs 13.5%, p<2.2E-16). Of the bone/bone marrow samples, 237 of 619 samples were decalcified. Decalcification was associated with significantly higher failure rates than non-decalcified samples for both DNA (29.1% vs 3.7%) and RNA (67.4% vs 30.8%) (Table 2). One method of avoiding decalcification for bone marrow samples is utilization of clot preparations, where aspirates are processed as an FFPE block. Clot preparations fail sequencing significantly less often than decalcified core biopsies (DNA: 3.3% vs 18.8%, p=9.2E-06; RNA: 39.2% vs 70.4%, p=2.5E-03) (Table 3). CONCLUSIONS: CGP of samples acquired from bone and bone marrow sites is challenging, with a lower success rate for DNA and RNA sequencing than soft tissue sites. The higher overall failure rate correlates with use of decalcification agents leading to degradation of nucleic acids and impacts RNA sequencing significantly more than DNA (67.4% vs 30.8% failed). Clot preparations of bone marrow samples performed better than core biopsies for both DNA and RNA. The higher overall RNA sequencing failure rates still observed in in non-decalcified bone/bone marrow are predominantly due to RNA failure of non-decalcified clot preparations. These samples likely have increased failure rates secondary the use of non-standard fixatives (e.g. B+, Bouin's, AZF, etc.) not documented in the pathology report and the frequency of hypocellular clot preparations in conjunction with higher requirements for RNA yield compared to DNA yield. To increase CGP success rates, decalcification should be avoided when possible. Peripheral blood and bone marrow aspirate samples rarely fail sequencing (<1%, data not shown) and are preferable to decalcified samples if adequate tumor is present. Bone marrow clot preparations perform better than bone marrow core biopsies and clot preparations should be fixed with 10% neutral buffered formalin. If decalcification is required for processing, EDTA based decalcification methods and/or minimizing decalcification times is recommended. Disclosures Duncan: Foundation Medicine, Inc.: Employment. Danziger:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. Duncan:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. Hemmerich:F. Hoffman La Roche, Ltd.: Equity Ownership; Foundation Medicine, Inc.: Employment. Edgerly:F. Hoffman La Roche, Ltd.: Equity Ownership; Foundation Medicine, Inc: Employment. Huang:F. Hoffman La Roche, Ltd.: Equity Ownership; Foundation Medicine, Inc.: Employment. Vergilio:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. Elvin:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. He:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. Britt:Foundation Medicine, Inc: Employment. Reddy:F. Hoffman La Roche, Ltd.: Equity Ownership; Foundation Medicine, Inc: Employment. Sathyan:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. Alexander:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. Ross:F. Hoffman La Roche, Ltd.: Equity Ownership; Foundation Medicine, Inc.: Employment. Brown:Foundation Medicine, Inc.: Employment; F. Hoffman La Roche, Ltd.: Equity Ownership. Ramkissoon:F. Hoffman La Roche, Ltd.: Equity Ownership; Foundation Medicine, Inc.: Employment. Severson:F. Hoffman La Roche, Ltd.: Equity Ownership; Foundation Medicine, Inc.: Employment.


Oncotarget ◽  
2015 ◽  
Vol 6 (25) ◽  
pp. 21636-21644 ◽  
Author(s):  
Kazuko Sakai ◽  
Haruhiko Takeda ◽  
Norihiro Nishijima ◽  
Etsuro Orito ◽  
Kouji Joko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document