scholarly journals Function and Role of Regulatory T Cells in Rheumatoid Arthritis

2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Jiang ◽  
Guocan Yang ◽  
Qi Liu ◽  
Shengjun Wang ◽  
Dawei Cui

Rheumatoid arthritis (RA) is a systemic and heterogeneous autoimmune disease with symmetrical polyarthritis as its critical clinical manifestation. The basic cause of autoimmune diseases is the loss of tolerance to self or harmless antigens. The loss or functional deficiency of key immune cells, regulatory T (Treg) cells, has been confirmed in human autoimmune diseases. The pathogenesis of RA is complex, and the dysfunction of Tregs is one of the proposed mechanisms underlying the breakdown of self-tolerance leading to the progression of RA. Treg cells are a vital component of peripheral immune tolerance, and the transcription factor Foxp3 plays a major immunosuppressive role. Clinical treatment for RA mainly utilizes drugs to alleviate the progression of disease and relieve disease activity, and the ideal treatment strategy should be to re-induce self-tolerance before obvious tissue injury. Treg cells are one of the ideal options. This review will introduce the classification, mechanism of action, and characteristics of Treg cells in RA, which provides insights into clinical RA treatment.

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Daniil Shevyrev ◽  
Valeriy Tereshchenko ◽  
Elena Blinova ◽  
Nadezda Knauer ◽  
Ekaterina Pashkina ◽  
...  

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.


2013 ◽  
Vol 65 (3) ◽  
pp. 552-554 ◽  
Author(s):  
Berent Prakken ◽  
Ellen Wehrens ◽  
Femke van Wijk

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yasuto Araki ◽  
Toshihide Mimura

Autoimmune diseases are chronic inflammatory disorders caused by a loss of self-tolerance, which is characterized by the appearance of autoantibodies and/or autoreactive lymphocytes and the impaired suppressive function of regulatory T cells. The pathogenesis of autoimmune diseases is extremely complex and remains largely unknown. Recent advances indicate that environmental factors trigger autoimmune diseases in genetically predisposed individuals. In addition, accumulating results have indicated a potential role of epigenetic mechanisms, such as histone modifications, in the development of autoimmune diseases. Histone modifications regulate the chromatin states and gene transcription without any change in the DNA sequence, possibly resulting in phenotype alteration in several different cell types. In this paper, we discuss the significant roles of histone modifications involved in the pathogenesis of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, primary biliary cirrhosis, and type 1 diabetes.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Mie Oki ◽  
Norihiko Watanabe ◽  
Takayoshi Owada ◽  
Yoshihiro Oya ◽  
Kei Ikeda ◽  
...  

Inhibitory coreceptors are thought to play important roles in maintaining immunological homeostasis, and a defect in the negative signals from inhibitory coreceptors may lead to the development of autoimmune diseases. We have recently identified B and T lymphocyte attenuator (BTLA), a new inhibitory coreceptor expressed on immune cells, and we suggest that BTLA may be involved in the development of autoimmune diseases using BTLA-deficient mice. However, the role of BTLA in the pathogenesis of autoimmune diseases in humans remains unknown. We, therefore, examined the possible association between BTLA and rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Sjögren's syndrome (SS) by conducting a case-control genetic association study. We found that 590C single-nucleotide polymorphism (SNP) of BTLA gene was significantly associated with susceptibility to RA, but not to SLE or SS. Furthermore, RA patients bearing this 590C SNP developed the disease significantly earlier than the patients without this allele. We also found that BTLA with 590C allele lacked the inhibitory activity on concanavalin A- and anti-CD3 Ab-induced IL-2 production in Jurkat T cells. These results suggest that BTLA is an RA-susceptibility gene and is involved in the protection from autoimmunity in humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Ding ◽  
Rui Su ◽  
Ruihe Wu ◽  
Hongwei Xue ◽  
Yanyan Wang ◽  
...  

Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mei-Ling Yang ◽  
Fernanda M. C. Sodré ◽  
Mark J. Mamula ◽  
Lut Overbergh

The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of ‘neoepitopes’ consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.


2014 ◽  
Vol 124 (1) ◽  
pp. 55-58
Author(s):  
Katarzyna Pogoda ◽  
Maria Pyszniak ◽  
Magdalena Bańka ◽  
Beata Rybojad ◽  
Jacek Tabarkiewicz

Abstract Th17 cells are newly described population of lymphoctyes, that recruits neutrophils to the site of inflammation and activate inflammatory phenotype of various tissues. They also play a pivotal role in autoimmune diseases and cancers. These cells secrete mainly different isoforms of IL-17, but also IL-21 and IL-22. Rheumatoid arthritis and juvenile idiopathic arthritis are the most common autoimmune joints’ inflammatory disease, affecting respectively adults and children. For a long time the immunopathogenesis of autoimmune diseases has been associated with Th1 lymphocytes. This hypothesis has changed after the discovery of Th17 cells, which are thought to be key mediators of autoimmune arthritides


2020 ◽  
Vol 21 (19) ◽  
pp. 7015
Author(s):  
Peter J. Eggenhuizen ◽  
Boaz H. Ng ◽  
Joshua D. Ooi

Regulatory T cells (Tregs) are a small yet critical subset of CD4+ T cells, which have the role of maintaining immune homeostasis by, for example, regulating self-tolerance, tumor immunity, anti-microbial resistance, allergy and transplantation rejection. The suppressive mechanisms by which Tregs function are varied and pleiotropic. The ability of Tregs to maintain self-tolerance means they are critical for the control and prevention of autoimmune diseases. Irregularities in Treg function and number can result in loss of tolerance and autoimmune disease. Restoring immune homeostasis and tolerance through the promotion, activation or delivery of Tregs has emerged as a focus for therapies aimed at curing or controlling autoimmune diseases. Such therapies have focused on the Treg cell subset by using drugs to suppress T effector cells and promote Tregs. Other approaches have trialed inducing tolerance by administering the autoantigen via direct administration, by transient expression using a DNA vector, or by antigen-specific nanoparticles. More recently, cell-based therapies have been developed as an approach to directly or indirectly enhance Treg cell specificity, function and number. This can be achieved indirectly by transfer of tolerogenic dendritic cells, which have the potential to expand antigen-specific Treg cells. Treg cells can be directly administered to treat autoimmune disease by way of polyclonal Tregs or Tregs transduced with a receptor with high affinity for the target autoantigen, such as a high affinity T cell receptor (TCR) or a chimeric antigen receptor (CAR). This review will discuss the strategies being developed to redirect autoimmune responses to a state of immune tolerance, with the aim of the prevention or amelioration of autoimmune disease.


Sign in / Sign up

Export Citation Format

Share Document