scholarly journals Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Tingting Ding ◽  
Rui Su ◽  
Ruihe Wu ◽  
Hongwei Xue ◽  
Yanyan Wang ◽  
...  

Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies generation through providing necessary help for germinal center (GC) B cells, whereas T follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process through restraining Tfh cell responses. However, signals underlying the regulation of Tfh and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous subpopulation of B cells with immunosuppressive function. Considerable advances have been made in their functions to produce anti‐inflammatory cytokines and to regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes Bregs an important checkpoint in GC response. Bregs exert profound impacts on the differentiation, function, and distribution of Tfh and Tfr cells in the immune microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg interactions will inspire novel implications for the establishment of homeostasis and prevention of autoantibodies in diverse diseases. This review summarizes the dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular mechanisms of autoantibody production and evoke a revolution in immunotherapy for autoimmune diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Shimeng Zhang ◽  
Lei Li ◽  
Danli Xie ◽  
Srija Reddy ◽  
John W. Sleasman ◽  
...  

T Follicular helper (Tfh) cells promote germinal center (GC) B cell responses to develop effective humoral immunity against pathogens. However, dysregulated Tfh cells can also trigger autoantibody production and the development of autoimmune diseases. We report here that Tsc1, a regulator for mTOR signaling, plays differential roles in Tfh cell/GC B cell responses in the steady state and in immune responses to antigen immunization. In the steady state, Tsc1 in T cells intrinsically suppresses spontaneous GC-Tfh cell differentiation and subsequent GC-B cell formation and autoantibody production. In immune responses to antigen immunization, Tsc1 in T cells is required for efficient GC-Tfh cell expansion, GC-B cell induction, and antigen-specific antibody responses, at least in part via promoting GC-Tfh cell mitochondrial integrity and survival. Interestingly, in mixed bone marrow chimeric mice reconstituted with both wild-type and T cell-specific Tsc1-deficient bone marrow cells, Tsc1 deficiency leads to enhanced GC-Tfh cell differentiation of wild-type CD4 T cells and increased accumulation of wild-type T regulatory cells and T follicular regulatory cells. Such bystander GC-Tfh cell differentiation suggests a potential mechanism that could trigger self-reactive GC-Tfh cell/GC responses and autoimmunity via neighboring GC-Tfh cells.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuhong Chen ◽  
Mei Yu ◽  
Yongwei Zheng ◽  
Guoping Fu ◽  
Gang Xin ◽  
...  

Abstract Many autoimmune diseases are characterized by the production of autoantibodies. The current view is that CD4+ T follicular helper (Tfh) cells are the main subset regulating autoreactive B cells. Here we report a CXCR5+PD1+ Tfh subset of CD8+ T cells whose development and function are negatively modulated by Stat5. These CD8+ Tfh cells regulate the germinal center B cell response and control autoantibody production, as deficiency of Stat5 in CD8 T cells leads to an increase of CD8+ Tfh cells, resulting in the breakdown of B cell tolerance and concomitant autoantibody production. CD8+ Tfh cells share similar gene signatures with CD4+ Tfh, and require CD40L/CD40 and TCR/MHCI interactions to deliver help to B cells. Our study thus highlights the diversity of follicular T cell subsets that contribute to the breakdown of B-cell tolerance.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 13.2-14
Author(s):  
H. Forsblad-D’elia ◽  
U. Hellman ◽  
A. Kumar ◽  
K. Lejon

Background:The role of different lymphocyte subsets in ankylosing spondylitis (AS) is still to be elucidated. It has previously been reported contradictory data concerning the levels of T Follicular Helper (TFH) cells and differentiated B cells in peripheral blood of AS patients. In addition, the connection to disease related parameters is still to be fully revealed.Objectives:The purpose of this study was to investigate the level of CD4+TFH cells and CD27+CD38+/CD38- B cells in patients with AS from northern Sweden and to compare the levels with age and sex-matched controls. We also studied associations between these cell subsets and disease related factors.Methods:Peripheral blood mononuclear cells (PBMSc) from a cohort of 50 patients with AS from Region Västerbotten (mean age 52±9.1 years, 33 (66 %) men, 50 (100 %) HLAB27 positive) and 50 pair wise matched blood donor controls (mean age 54±8.8 years, 33 (66 %) men) were stained with a combination of antibodies allowing for the detection of CD27, CD38, CD19, CD3, CD4 and CXCR5 markers and analyzed by flow cytometry. In addition, the patient with AS were examined with spinal x-ray for radiographic alterations assessed with mSASSS. CRP and ESR were measured and physical function and disease activity were registered with BASMI and BASFI respectively ASDAS-CRP and BASDAI.Results:When comparing AS patients and controls pair wise, we observed on average a 50% reduction of TFH (CD3+CD4+CXCR5+) cells among CD45+ lymphocytes in PBMCs from patients (p=0,000008). Furthermore, a 20-30% reduction among memory/plasma cells (CD19+CD27+CD38+ and CD19+CD27+CD38-) among CD45+ lymphocytes in PBMCs from patients (p=0,002 and p=0,007 respectively). For female patients a correlation between TFH and ESR (Rs=-0,551 p=0,022) was observed. Moreover, negative correlations between the two B cell subsets (CD19+CD27+CD38+ and CD19+CD27+CD38-) and ESR were observed for female patients (Rs =–0,476 p=0,053 and Rs =–0,522 p=0,032 respectively).Conclusion:TFH cells was reduced in AS patients and this reduction correlated with a reduction in differentiated (CD27+CD38+ and CD27+CD38-) B cells. In addition, the inflammation marker ESR was negatively correlated with TFH as well as with the differentiated B cell subsets in female patients. Our observations indicates a role of the humoral immune response in AS.Disclosure of Interests:None declared


2017 ◽  
Vol 214 (5) ◽  
pp. 1259-1267 ◽  
Author(s):  
Nike J. Kräutler ◽  
Dan Suan ◽  
Danyal Butt ◽  
Katherine Bourne ◽  
Jana R. Hermes ◽  
...  

Plasma cells (PCs) derived from germinal centers (GCs) secrete the high-affinity antibodies required for long-term serological immunity. Nevertheless, the process whereby GC B cells differentiate into PCs is uncharacterized, and the mechanism underlying the selective PC differentiation of only high-affinity GC B cells remains unknown. In this study, we show that differentiation into PCs is induced among a discrete subset of high-affinity B cells residing within the light zone of the GC. Initiation of differentiation required signals delivered upon engagement with intact antigen. Signals delivered by T follicular helper cells were not required to initiate differentiation but were essential to complete the differentiation process and drive migration of maturing PCs through the dark zone and out of the GC. This bipartite or two-signal mechanism has likely evolved to both sustain protective immunity and avoid autoantibody production.


2020 ◽  
Author(s):  
Can Cui ◽  
Jiawei Wang ◽  
Ping-Min Chen ◽  
Kelli A. Connolly ◽  
Martina Damo ◽  
...  

AbstractCD4+ T follicular helper (TFH) cells provide help to B cells, which is critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found TFH cells correlated with GC B cells and with prolonged survival of lung adenocarcinoma (LUAD) patients. To investigate further, we developed an LUAD model, in which tumor cells expressed B-cell- and T-cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells were necessary for tumor control, as were effector CD8+ T cells. The latter were reduced in the absence of T cell-B cell interactions or the IL-21 receptor. IL-21 was produced primarily by TFH cells, development of which required B cells. Moreover, development of tumor-specific TFH cell-responses was also reliant upon tumors that expressed B-cell-recognized neoantigens. Thus, tumor-neoantigens themselves can control the fate decisions of tumor-specific CD4+ T cells by facilitating interactions with tumor-specific B cells.Abstract Figure


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Long ◽  
Hedong Zhang ◽  
Wenjia Yuan ◽  
Gongbin Lan ◽  
Zhi Lin ◽  
...  

B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.


2020 ◽  
Vol 28 (12) ◽  
pp. 486-492
Author(s):  
Jia-Hui Huo ◽  
Xiao-Yun Wang ◽  
Lei Gong ◽  
Xin Gu

2008 ◽  
Vol 205 (12) ◽  
pp. 2873-2886 ◽  
Author(s):  
Jared M. Odegard ◽  
Benjamin R. Marks ◽  
Leah D. DiPlacido ◽  
Amanda C. Poholek ◽  
Dwight H. Kono ◽  
...  

The role of specialized follicular helper T (TFH) cells in the germinal center has become well recognized, but it is less clear how effector T cells govern the extrafollicular response, the dominant pathway of high-affinity, isotype-switched autoantibody production in the MRL/MpJ-Faslpr (MRLlpr) mouse model of lupus. MRLlpr mice lacking the Icos gene have impaired extrafollicular differentiation of immunoglobulin (Ig) G+ plasma cells accompanied by defects in CXC chemokine receptor (CXCR) 4 expression, interleukin (IL) 21 secretion, and B cell helper function in CD4 T cells. These phenotypes reflect the selective loss of a population of T cells marked by down-regulation of P-selectin glycoprotein ligand 1 (PSGL-1; also known as CD162). PSGL-1lo T cells from MRLlpr mice express CXCR4, localize to extrafollicular sites, and uniquely mediate IgG production through IL-21 and CD40L. In other autoimmune strains, PSGL-1lo T cells are also abundant but may exhibit either a follicular or extrafollicular phenotype. Our findings define an anatomically distinct extrafollicular population of cells that regulates plasma cell differentiation in chronic autoimmunity, indicating that specialized humoral effector T cells akin to TFH cells can occur outside the follicle.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xue Zhang ◽  
Ruli Ge ◽  
Hongliang Chen ◽  
Maxwell Ahiafor ◽  
Bin Liu ◽  
...  

Follicular helper CD4+ T (TFH) cells are a specialized subset of effector T cells that play a central role in orchestrating adaptive immunity. TFH cells mainly promote germinal center (GC) formation, provide help to B cells for immunoglobulin affinity maturation and class-switch recombination of B cells, and facilitate production of long-lived plasma cells and memory B cells. TFH cells express the nuclear transcriptional repressor B cell lymphoma 6 (Bcl-6), the chemokine (C-X-C motif) receptor 5 (CXCR5), the CD28 family members programmed cell death protein-1 (PD-1) and inducible costimulator (ICOS) and are also responsible for the secretion of interleukin-21 (IL-21) and IL-4. Follicular regulatory CD4+ T (TFR) cells, as a regulatory counterpart of TFH cells, participate in the regulation of GC reactions. TFR cells not only express markers of TFH cells but also express markers of regulatory T (Treg) cells containing FOXP3, glucocorticoid-induced tumor necrosis factor receptor (GITR), cytotoxic T lymphocyte antigen 4 (CTLA-4), and IL-10, hence owing to the dual characteristic of TFH cells and Treg cells. ICOS, expressed on activated CD4+ effector T cells, participates in T cell activation, differentiation, and effector process. The expression of ICOS is highest on TFH and TFR cells, indicating it as a key regulator of humoral immunity. Multiple sclerosis (MS) is a severe autoimmune disease that affects the central nervous system and results in disability, mediated by autoreactive T cells with evolving evidence of a remarkable contribution from humoral responses. This review summarizes recent advances regarding TFH cells, TFR cells, and ICOS, as well as their functional characteristics in relation to MS.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 343.2-343
Author(s):  
H. Hao ◽  
S. Nakayamada ◽  
Y. Kaoru ◽  
N. Ohkubo ◽  
S. Iwata ◽  
...  

Background:Systemic lupus erythematosus (SLE) is a complex polygenic autoimmune disease characterized by immune-system aberrations. Among several types of immune cells, T follicular helper (Tfh) cells promote autoantibody production, whereas T follicular regulatory (Tfr) cells suppress Tfh-mediated antibody responses.(1)Objectives:To identify the characteristics of Tfr cells and to elucidate the mechanisms of conversion of Tfh cells to Tfr cells, we probed the phenotype of T helper cells in patients with SLE and underlying epigenetic modifications by cytokine-induced signal transducer and activators of transcription (STAT) family factors.Methods:Peripheral blood mononuclear cells from SLE patients (n=44) and healthy donors (HD; n=26) were analyzed by flow cytometry. Memory Tfh cells were sorted and cultured under stimulation with T cell receptor and various cytokines. Expression of characteristic markers and phosphorylation of STATs (p-STATs) were analyzed by flow cytometry and quantitation PCR. Histone modifications were evaluated by chromatin immunoprecipitation.Results:The proportion of CXCR5+FoxP3+Tfr cells in CD4+T cells tended to increase (2.1% vs 1.7%, p=0.17); however, that of CD4+CD45RA-FoxP3hiactivated Tfr cells in Tfr cells was decreased (4.8% vs 7.1%, p<0.05), while CD4+CD45RA-FoxP3lownon-suppressive Tfr cells was increased (50.1% vs 38.2%, p<0.01) in SLE compared to HD. The percentage of PD-1hiactivated Tfh cells was significantly higher in SLE compared to HD (15.7% vs 5.9%, p<0.01). Furthermore, active patients had a higher ratio of activated Tfh/Tfr cells compared to inactive patients. In vitro study showed that IL-2, but not other cytokines such as TGF-β1, IL-12, IL-27, and IL-35, induced the conversion of memory Tfh cells to functional Tfr cells characterized by CXCR5+Bcl6+Foxp3hipSTAT3+pSTAT5+cells. The loci ofFOXP3at STAT binding sites were marked by bivalent histone modifications. After IL-2 stimulation, STAT5 directly bound on FOXP3 gene loci accompanied by suppressing H3K27me3. Finally, we found that serum level of IL-2 was decreased in SLE and that stimulation with IL-2 suppressed the generation of CD38+CD27+B cells by ex vivo coculture assay using Tfh cells and B cells isolated from human blood.Conclusion:Our findings indicated that the regulatory function of Tfr cells is impaired due to the low ability of IL-2 production and that IL-2 restores the function of Tfr cells through conversion of Tfh cells to Tfr cells in SLE. Thus, the reinstatement of the balance between Tfh and Tfr cells will provide important therapeutic approaches for SLE.References:[1]Deng J, Wei Y, Fonseca VR, et al. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol. 2019; 15 (8): 475-90.Disclosure of Interests: :He Hao: None declared, Shingo Nakayamada Grant/research support from: Mitsubishi-Tanabe, Takeda, Novartis and MSD, Speakers bureau: Bristol-Myers, Sanofi, Abbvie, Eisai, Eli Lilly, Chugai, Asahi-kasei and Pfizer, Yamagata Kaoru: None declared, Naoaki Ohkubo: None declared, Shigeru Iwata: None declared, Yoshiya Tanaka Grant/research support from: Asahi-kasei, Astellas, Mitsubishi-Tanabe, Chugai, Takeda, Sanofi, Bristol-Myers, UCB, Daiichi-Sankyo, Eisai, Pfizer, and Ono, Consultant of: Abbvie, Astellas, Bristol-Myers Squibb, Eli Lilly, Pfizer, Speakers bureau: Daiichi-Sankyo, Astellas, Chugai, Eli Lilly, Pfizer, AbbVie, YL Biologics, Bristol-Myers, Takeda, Mitsubishi-Tanabe, Novartis, Eisai, Janssen, Sanofi, UCB, and Teijin


Sign in / Sign up

Export Citation Format

Share Document