scholarly journals Frequency of Gluten-Reactive T Cells in Active Celiac Lesions Estimated by Direct Cell Cloning

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuo-Wang Qiao ◽  
Shiva Dahal-Koirala ◽  
Linn M. Eggesbø ◽  
Knut E. A. Lundin ◽  
Ludvig M. Sollid

Chronic inflammation of the small intestine in celiac disease is driven by activation of CD4+ T cells that recognize gluten peptides presented by disease-associated HLA-DQ molecules. We have performed direct cell cloning of duodenal biopsies from five untreated and one refractory celiac disease patients, and three non-celiac disease control subjects in order to assess, in an unbiased fashion, the frequency of gluten-reactive T cells in the disease-affected tissue as well as the antigen fine specificity of the responding T cells. From the biopsies of active disease lesions of five patients, 19 T-cell clones were found to be gluten-reactive out of total 1,379 clones tested. This gave an average of 1.4% (range 0.7% - 1.9%) of gluten-reactive T cells in lamina propria of active celiac lesions. Interestingly, also the patient with refractory celiac disease had gluten-reactive T cell clones in the lamina propria (5/273; 1.8%). In comparison, we found no gluten-reactive T cells in any of the total 984 T-cell clones screened from biopsies from three disease control donors. Around two thirds of the gluten-reactive clones were reactive to a panel of peptides representing known gluten T-cell epitopes, of which two thirds were reactive to the immunodominant DQ2.5-glia-α1/DQ2.5-glia-α2 and DQ2.5-glia-ω1/DQ2.5-glia-ω2 epitopes. This study shows that gluten-reactive T cells in the inflamed duodenal tissue are prevalent in the active disease lesion, and that many of these T cells are reactive to T-cell epitopes that are not yet characterized. Knowledge of the prevalence and epitope specificity of gluten-specific T cells is a prerequisite for therapeutic efforts that target disease-specific T cells in celiac disease.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2332-2332
Author(s):  
Hetty Jolink ◽  
Els van Oorschot ◽  
Ed J Kuijper ◽  
Jan Willem Drijfhout ◽  
Jaap T van Dissel ◽  
...  

Abstract Abstract 2332 Invasive aspergillosis is a common and life-threatening complication in recipients of allogeneic stem cell transplantation. Patients are at risk in the neutropenic phase, but also after recovery of the neutrophil count there is an increased risk of developing invasive aspergillosis, probably caused by other defects in the innate immune system, or by impaired T cell mediated immunity after stem cell transplantation. In healthy individuals and in patients lymphoproliferative responses to crude Aspergillus extracts and recombinant antigens have been shown. Furthermore, patients after haploidentical stem cell transplantation were less susceptible to aspergillus infection when transferred with T cell lines generated against Aspergillus fumigatus. To facilitate the study of the role of T cell mediated immunity in aspergillus infection and develop new therapeutic strategies to prevent or treat invasive aspergillosis we aimed to identify T cell epitopes of Aspergillus fumigatus. Peripheral blood mononuclear cells (PBMC) of healthy individuals were stimulated with overlapping 15mer peptides of the Aspergillus fumigatus proteins Crf1 and Catalase1. Directly after stimulation no antigen specific T cells could be detected, however after stimulation with the complete peptide pool, IL-2 and IL-15 for 7 days and subsequent restimulation with peptide pulsed autologous PBMC an increase of activated T cells could be detected in half of the healthy donors, based on IFNγ production, CD154 (CD40 ligand) and CD137 expression. From 6 donors antigen specific CD4+ T cells were single cell sorted 4 hours after restimulation with the complete peptide pool using the IFNγ capture assay or by sorting the CD137+ CD4+ T cells 48 hours after restimulation with the complete peptide pool and cells were clonally expanded. The generated T cell clones were tested for Aspergillus peptide specificity against the complete peptide pool using ELISA to determine the IFNy and IL-4 production. Aspergillus peptide specific clones were further analyzed with subpools of the overlapping peptides, to identify the specific T cell epitope. These subpools are organized in a matrix to enable us to identify the recognized epitope directly from this analysis. Subsequently, the T cell clones were stimulated with the single recognized peptides to confirm the identified epitopes. Five different T cell epitopes of Crf1 were identified: one epitope at position 161–171, which was previously described, and four novel epitopes. For the Catalase1 protein we identified 7 different epitopes, which have not been described before. By using HLA-blocking monoclonal antibodies and an HLA-typed EBV-LCL panel we determined the HLA-restriction of the different T cell epitopes. Two Crf1 epitopes and three Catalase1 epitopes were HLA-DR restricted, and one of the Crf1 epitopes was presented by HLA-DP. The HLA-restriction of the other 6 identified epitopes has not yet been characterized. The T cell clones showed 3 different patterns of cytokine production. Some clones only produced IFNγ, some clones only IL-4 and others produced both IFNγ and IL-4. Twelve T cell epitopes in two different proteins of Aspergillus fumigatus, presented by various HLA class II molecules, were identified. The generated T cell clones showed a variable pattern of cytokine production. To evaluate whether all these epitopes are relevant for the immune response against aspergillosis, the specificity against Aspergillus fumigatus will be tested by incubating T cells and dendritic cells with inactivated fungus. If Aspergillus-specificity is demonstrated, these epitopes can be used to study T cell mediated immunity in patients with aspergillosis and be a first step towards new therapeutic options for invasive aspergillosis. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 178 (1) ◽  
pp. 187-196 ◽  
Author(s):  
K E Lundin ◽  
H Scott ◽  
T Hansen ◽  
G Paulsen ◽  
T S Halstensen ◽  
...  

Celiac disease (CD) is most probably an immunological disease, precipitated in susceptible individuals by ingestion of wheat gliadin and related proteins from other cereals. The disease shows a strong human HLA association predominantly to the cis or trans encoded HLA-DQ(alpha 1*0501,beta 1*0201) (DQ2) heterodimer. T cell recognition of gliadin presented by this DQ heterodimer may thus be of immunopathogenic importance in CD. We therefore challenged small intestinal biopsies from adult CD patients on a gluten-free diet in vitro with gluten (containing both gliadin and other wheat proteins), and isolated activated CD25+ T cells. Polyclonal T cell lines and a panel of T cell clones recognizing gluten were established. They recognized the gliadin moiety of gluten, but not proteins from other cereals. Inhibition studies with anti-HLA antibodies demonstrated predominant antigen presentation by HLA-DQ molecules. The main antigen-presenting molecule was established to be the CD-associated DQ(alpha 1*0501, beta 1*0201) heterodimer. The gluten-reactive T cell clones were CD4+, CD8-, and carried diverse combinations of T cell receptor (TCR) V alpha and V beta chains. The findings suggest preferential mucosal presentation of gluten-derived peptides by HLA-DQ(alpha 1*0501, beta 1*0201) in CD, which may explain the HLA association.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A719-A719
Author(s):  
Paola Bonaventura ◽  
Vincent Alcazer ◽  
Virginie Mutez ◽  
Laurie Tonon ◽  
Juliette Martin ◽  
...  

BackgroundHuman endogenous retroviruses (HERVs) are aberrantly expressed by tumor cells and may represent a source of T cell epitopesMethodsUsing TCGA pancancer RNAseq data (n=8,893 samples), we developed a bioinformatics-based method to select cancer-specific HERVs associated with a cytotoxic T cell response (“cyt-HERVs”) and identify shared T cell epitope candidates. T cells were primed with selected short and long peptide candidates from HLA-A2+ healthy donors. Peptide-specific dextramers were used to sort and expand specific CD8+ T cell clones and determine their TCR sequences and avidity. Cytotoxicity was assessed against HERV-expressing tumor cell lines and patient-derived organoids using Incucyte and Nanolive technologies (Flowchart, figure 1).ResultsIn a pancancer analysis, we identified 57 HML-2/HERV-K HLA-A*0201 epitope candidates from 27 distinct open reading frames. Six shared HLA-A2 strong binders 9-mer peptides, present on multiple HERVs located on different chromosomes, and with translational evidence found in mass spectrometry public datasets, were selected and synthetized. In vitro HLA binding assay confirmed peptide-HLA affinity. Priming assays showed the presence of specific CD8+ T cells leading to polyfunctional IFN-γ+ TNF-α+ T cell responses with upregulation of the degranulation marker CD107A upon co-culture with peptide-pulsed T2 cells. Synthetic long peptides containing the epitopes were used to confirm the correct processing by antigen-presenting cells. The functionality of the sorted T cell clones was confirmed using an Elispot assay (GrzB+ IFN-γ+). Their sequenced TCRs were predicted to stably interact with their respective MHC-peptide complexes in a 3D model. This was confirmed by measurement of the functional avidity, which was in the same order as CMV-specific T cell clones. HERV-specific CD8+ T cells induced specific cell death of HLA-A2+ cancer cell lines, associated with IFN-g production, in a HLA-A2 restricted manner. Finally, pre-existing HERV-specific CD8+ T cells were identified using dextramers among tumor infiltrating lymphocytes (TILs) from cancer patients. HERV-specific T cells co-cultured with patient derived organoids showed signs of activation with lysis of the organoid.ConclusionsOur bioinformatics-based approach allowed us to identify shared HERV-derived CD8+ T cell epitopes specifically expressed by tumor cells and inducing high avidity T cell clones able to kill tumor cells in a class I-restricted manner. The detection of TILs recognizing HERV peptides suggests natural presentation of these epitopes in the tumors. These HERV-derived epitopes may thus represent relevant targets for the development of new cancer vaccines or T cell-based therapies, especially in tumors with low mutational burden.Abstract 691 Figure 1Graphical flowchart of HERV antigen validation. Graphical representation of the flowchart used to identify and validate specific CD8+ T cells for shared tumor epitopes from endogenous retroviruses http://dx.doi.org/10.1136/jitc-2021-SITC2021.691


Diabetes ◽  
1996 ◽  
Vol 45 (3) ◽  
pp. 328-336 ◽  
Author(s):  
J. D. Peterson ◽  
K. Haskins

Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 780-786 ◽  
Author(s):  
MM Hallet ◽  
V Praloran ◽  
H Vie ◽  
MA Peyrat ◽  
G Wong ◽  
...  

Abstract Macrophage colony stimulating factor (CSF-1) is one of several cytokines that control the differentiation, survival, and proliferation of monocytes and macrophages. A set of 11 human T-cell clones, chosen for their phenotypic diversity, were tested for their ability to express CSF-1 mRNA. After 5 hours of stimulation with phorbol myristate acetate (PMA) + calcium ionophore (Cal), all T-cell clones expressed a major 4-kb transcript, a less abundant 2-kb transcript, and several other minor species. This pattern of expression is typical for CSF-1 mRNAs. Furthermore, of the two alloreactive T-cell clones analyzed, only one showed a definitive message for CSF-1 on specific antigenic stimulation, but with delayed kinetics and less efficiency. Both conditions of stimulation induced the release of CSF-1 protein by T cells in the culture medium. Together, these findings demonstrate for the first time that normal T cells are able to produce CSF-1, previous reports being limited to two cases of tumoral cells of the T-cell lineage.


2007 ◽  
Vol 123 ◽  
pp. S106-S107
Author(s):  
Eva Matejkova ◽  
Zuzana Hrotekova ◽  
Drahomira Kyjovska ◽  
Jaroslav Michalek ◽  
Petra Vidlakova

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5718-5718 ◽  
Author(s):  
Elke Ruecker-Braun ◽  
Falk Heidenreich ◽  
Cornelia S Link ◽  
Maria Schmiedgen ◽  
Rebekka Wehner ◽  
...  

Abstract Mutated nucleophosmin (NPM1) was identified as a promising leukemia-specific antigen for cytotoxic T lymphocytes (CTL). NPM1 is a multifunctional nucleocytoplasmic shuttling phosphoprotein. In AML patients with normal cytogenetics NPM1 mutations are the most frequent molecular genetic abnormalities, accounting for up to 60% of the patients. The peptide (AIQDLCLAV) derived from the mutated NPM1 (NPM1mut) has been described to elicit a CTL response restricted to HLA-A*02:01. We observed that NPM1mut multimer+ T cells were very rare in peripheral blood. The limitation of the multimer technology is the absence of a positive control; nevertheless it is an attractive tool to generate antigen positive T cell clones. The goal was to compare strategies for the generation of NPM1mut multimer+ T cell clones systematically. For this purpose we analyzed blood samples from two patients with AML after transplantation and six different healthy donors. We explored different strategies to isolate HLA-A*02:01 restricted NPM1mut multimer+ T single cells. The first strategy was to isolate multimer+ T cells directly from the blood without any supplements by single cell sorting. The second strategy was to sort multimer+ T cells which were previously CD8+ enriched supplementing the media either with or without IL-21. Published by Yongqing et al.IL-21 enhances the generation of human antigen-specific CD8+ T cells. A further strategy was to previously enrich CD14+ cells for the generation of autologous monocyte-derived dendritic cells (MoDCs). The co-cultivation of MoDCs loaded with the NPM1mut peptide and CD8+ cells were performed either with or without IL-21, as well. We expanded the last strategy by a second round of NPM1mut-specific stimulation. So far it was not possible to generate NPM1mut-specific T cell clones based on the advanced strategies and consistently there is no data published on NPM1mut multimer+ T cell clones. This fact raises the question why NPM1mut specific clones display such low frequencies. We want to point out that although we varied the strategies and we used eight different donors the isolation of NPM1mut-specific T cells restricted to HLA-A*02:01 apparently is challenging. Greater efforts, e.g. a larger number of donors or the use of immunological checkpoint inhibitors during cell culture are needed. Disclosures Thiede: AgenDix: Employment, Other: Ownership. Schetelig:Sanofi: Honoraria.


1998 ◽  
Vol 66 (10) ◽  
pp. 4981-4988 ◽  
Author(s):  
Irina Lyadova ◽  
Vladimir Yeremeev ◽  
Konstantin Majorov ◽  
Boris Nikonenko ◽  
Sergei Khaidukov ◽  
...  

ABSTRACT I/St mice, previously characterized as susceptible toMycobacterium tuberculosis H37Rv, were given 103 or 105 CFU intravenously. At two time points postinoculation, the cell suspensions that resulted from enzymatic digestion of lungs were enumerated and further characterized phenotypically and functionally. Regarding the T-cell populations recovered at 2 and 5 weeks postinfection, two main results were obtained: (i) the population of CD44− CD45RB+cells disappeared within 2 weeks postinfection, while the number of CD44+ CD45RB−/low cells slowly increased between weeks 2 and 5; (ii) when cocultured with irradiated syngeneic splenocytes, these lung T cells proliferated in the presence of H37Rv sonicate. Using H37Rv sonicate and irradiated syngeneic splenocytes to reactivate lung T cells, we selected five CD3+CD4+ CD8− T-cell clones. In addition to the H37Rv sonicate, the five clones react to both a short-term culture filtrate and an affinity-purified 15- to 18-kDa mycobacterial molecule as assessed by the proliferative assay. However, there was a clear difference between T-cell clones with respect to cytokine (gamma interferon [IFN-γ] and interleukin-4 [IL-4] and IL-10) profiles: besides one Th1-like (IFN-γ+ IL-4−) clone and one Th0-like (IFN-γ+ IL-4+IL-10+) clone, three clones produced predominantly IL-10, with only marginal or no IL-4 and IFN-γ responses. Inhibition of mycobacterial growth by macrophages in the presence of T cells was studied in a coculture in vitro system. It was found that the capacity to enhance antimycobacterial activity of macrophages fully correlated with INF-γ production by individual T-cell clones following genetically restricted recognition of infected macrophages. The possible functional significance of cytokine diversity among T-cell clones is discussed.


2020 ◽  
Vol 8 (1) ◽  
pp. e000311 ◽  
Author(s):  
Lucine Marotte ◽  
Sylvain Simon ◽  
Virginie Vignard ◽  
Emilie Dupre ◽  
Malika Gantier ◽  
...  

BackgroundGenome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far,PDCD1editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments.MethodsHere we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to editPDCD1gene in human effector memory CD8+T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validatedPDCD1editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain’s sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR.ResultsHere we demonstrated the feasibility to editPDCD1gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent onPDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model.ConclusionThe use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.


1987 ◽  
Vol 73 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Enrico Maggi ◽  
Donatella Macchia ◽  
Paola Parronchi ◽  
Domenico Milo ◽  
Sergio Romagnani

A total of 76 T-cell clones established from peripheral blood (PB) of 2 patients with the acquired immune deficiency syndrome (AIDS) and of 141 T-cell clones established from PB of 3 normal donors were compared for their ability to produce interleukin 2 (IL-2) and gamma-interferon (γ-IFN). Twenty-seven clones from AIDS patients and 85 clones from controls expressed the CD4 phenotype, whereas 49 clones from AIDS patients and 56 clones from controls expressed the CD8 phenotype. There were no significant differences in the proportions of IL-2-producing CD4 T-cell clones established from PB of patients with AIDS and controls, but the mean concentration of IL-2 produced by CD4 clones from AIDS patients was significantly lower than that produced by CD4 clones from controls. Both the proportion of γ-IFN-producing CD4 clones and the mean concentration of γ-IFN produced by CD4 clones were significantly lower in AIDS patients than in controls. In contrast, there were no differences between AIDS patients and normal individuals in the proportion of IL-2- or Y-IFN-producing CD8 clones, or in the mean concentration of IL-2 and v-IFN produced by CD8 clones. These data suggest that the reduced ability of PB T-cells from patients with AIDS to produce IL-2 and v-IFN is not simply due to altered proportions or numbers of T-cell sub-populations, but also reflects intrinsic abnormalities of individual CD4 T lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document