scholarly journals Epigenetic Features of HIV-Induced T-Cell Exhaustion Persist Despite Early Antiretroviral Therapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Genevieve E. Martin ◽  
Debattama R. Sen ◽  
Matthew Pace ◽  
Nicola Robinson ◽  
Jodi Meyerowitz ◽  
...  

T cell dysfunction occurs early following HIV infection, impacting the emergence of non-AIDS morbidities and limiting curative efforts. ART initiated during primary HIV infection (PHI) can reverse this dysfunction, but the extent of recovery is unknown. We studied 66 HIV-infected individuals treated from early PHI with up to three years of ART. Compared with HIV-uninfected controls, CD4 and CD8 T cells from early HIV infection were characterised by T cell activation and increased expression of the immune checkpoint receptors (ICRs) PD1, Tim-3 and TIGIT. Three years of ART lead to partial – but not complete – normalisation of ICR expression, the dynamics of which varied for individual ICRs. For HIV-specific cells, epigenetic profiling of tetramer-sorted CD8 T cells revealed that epigenetic features of exhaustion typically seen in chronic HIV infection were already present early in PHI, and that ART initiation during PHI resulted in only a partial shift of the epigenome to one with more favourable memory characteristics. These findings suggest that although ART initiation during PHI results in significant immune reconstitution, there may be only partial resolution of HIV-related phenotypic and epigenetic changes.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3714-3714
Author(s):  
Jaco A. C. Van Bruggen ◽  
Fleur Peters ◽  
Gaspard Cretenet ◽  
J. Joseph Melenhorst ◽  
Eric Eldering ◽  
...  

Abstract Introduction Success rates of autologous T cell-based therapies, such as CAR-T cell therapy, in chronic lymphocytic leukemia (CLL) have been suboptimal and correlate with failure of activation and proliferation of T cells in vitro and in vivo. Previous data showing that impaired CD8 T-cell activation, proliferation and metabolic reprogramming could be restored by purifying CLL T cells via cell-sorting (van Bruggen et al., Blood, 2019) indicating that an as yet unknown, CLL-derived factor is responsible for acquired T-cell dysfunction. In this study we aim to elucidate the mechanistic basis of CLL-mediated T-cell dysfunction. Results Dynamic analysis of αCD3/CD28 stimulated autologous T cells in presence of CLL cells over a period of 9 days revealed that T-cell activation (CD25, CD71, CD95 and PD-1) in CLL is in fact not impaired but occurs in a delayed fashion. CLL T cells reached peak activation after 5-6 days in contrast to 2-3 days for age-matched healthy donors. (Fig. 1A). This delayed T cell receptor-induced T cell activation was largely normalized with tumor cell depletion by flow-sorting prior to activation. Accordingly, in absence versus presence of autologous CLL cells, CAR-T cells derived from CLL patients showed enhanced proliferation, cytokine production and cytotoxicity, indicating potential clinical relevance. These findings show that T cells in CLL are not (terminally) exhausted but that a CLL-derived factor interferes with proper T-cell activation, leading to a delay in activation and impaired proliferation and cytotoxicity. We attempted to identify the mechanism of action in which CLL cells induce T cell dysfunction and whether these suppressive effects are mediated through a soluble factor secreted by CLL cells or by contact-dependent mechanisms. Previous studies have shown that CD40 activation of CLL cells results in increased expression of key surface-expressed adhesion and costimulatory molecules, but also in alterations of immune-modulatory cytokines secretion. This model was therefore used to decipher mechanisms of CLL-mediated T cell dysfunction. CD40-activation of CLL cells resulted in improved T-cell activation and proliferation upon αCD3/CD28 stimulation in a contact-dependent manner (based on trans-well experiments; Fig. 1B ). Several clinically approved kinase inhibitors were tested to identify signaling cascades involved in CD40-mediated alleviation of T-cell dysfunction. Only pre-treatment of CLL cells with the SRC-inhibitor dasatinib (100nM) abrogated the enhanced T-cell activation induced by CD40-activated CLL cells. Additional control experiments excluded direct effects of dasatinib on T cell function. Dasatinib did not reduce expression of co-stimulatory markers on CD40-activated CLL cells, indicating that lack of co-stimulation was not the sole explanation for CLL-mediated T cell dysfunction. RNA sequencing of CD40-stimulated CLL cells treated with or without dasatinib and filtered for membrane-bound factors revealed the Sialic acid-binding Ig-like lectin 10 (Siglec-10) ligands CD24 and CD52 as potential candidates responsible for inhibiting T-cell function in CLL, which we confirmed at the protein level. We also found increased expression of Siglec-10 on CLL T cells, suggesting a role for Siglec-10 ligation in inhibition of the TCR signaling cascade. Indeed, inhibition of Siglec-10 ligation by blocking CD24, and CD52 antibodies subsequently improved T-cell activation despite presence of CLL cells (Fig. 1C). Conclusion These results demonstrate that T cells derived from CLL patients are not terminally dysfunctional and can be revived. Our observations indicate that CLL cells actively suppress (CAR) T-cell function in a contact-dependent fashion through CD24- and CD52-mediated Siglec-10 ligation. These proteins might represent targets for therapeutic intervention aimed at enhancing T-cell function in CLL. Figure 1 Figure 1. Disclosures Kater: Genmab, LAVA: Other: Ad Board, Steering Committee; Abbvie: Honoraria, Other: Ad Board, Research Funding; Janssen, AstraZeneca: Other: Ad Board, steering committee, Research Funding; BMS, Roche/Genentech: Other: Ad Board, , Research Funding.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Susan Swee-Shan Hue ◽  
Sufi Muhammad Suhail ◽  
Jason Chon Jun Choo ◽  
Nurhashikin Yusof ◽  
Alwin Hwai-Liang Loh ◽  
...  

Minimal change disease constitutes a major cause of nephrotic syndrome. It is regarded as a non-immune-complex mediated primary glomerulopathy and pathogenetically is characterised by podocyte injury and effacement of foot processes; therefore, it is also classified as a type of podocytopathy. T cell dysfunction with increased levels of a soluble glomerular permeability factor has been proposed to play a major role in the pathogenesis of minimal change disease. It has been therefore suggested that a dysfunction of regulatory T cells, the orchestrators of immune homeostasis, could be implicated in perpetuating T cell activation in this condition. However, the actual contribution of regulatory T cell dysfunction in the immunopathogenesis of primary minimal change disease is still largely unclear. We here propose a theoretical model based on the available evidence.


2021 ◽  
Vol 6 (57) ◽  
pp. eabf7570
Author(s):  
Laura A. Vella ◽  
Josephine R. Giles ◽  
Amy E. Baxter ◽  
Derek A. Oldridge ◽  
Caroline Diorio ◽  
...  

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


2000 ◽  
Vol 165 (8) ◽  
pp. 4305-4311 ◽  
Author(s):  
Gérard Eberl ◽  
Pierre Brawand ◽  
H. Robson MacDonald

Blood ◽  
2021 ◽  
Author(s):  
Muzaffar H Qazilbash ◽  
Neeraj Y Saini ◽  
Cha Soung-chul ◽  
Zhe Wang ◽  
Edward Stadtmauer ◽  
...  

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding anti-myeloma idiotype-keyhole limpet hemocyanin (Id-KLH) vaccine to vaccine-specific co-stimulated T cells. In this randomized, phase II trial, eligible patients received either the control (KLH only) or Id-KLH vaccine, an auto-transplant, vaccine-specific co-stimulated T-cells expanded ex-vivo, and two booster doses of the assigned vaccine. In 36 patients (20 in KLH, 16 in Id-KLH) enrolled, no dose-limiting toxicity was seen in either arm. At last evaluation, 6 (30%) and 8 (50%) had achieved complete remission in KLH-only and Id-KLH, respectively (p=0.22) and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; p=0.32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with KLH-only patients, there was a greater change in IR genes in T-cells in Id-KLH patients relative to baseline. Specifically, upregulation of genes associated with activation, induction of effector function, and generation of memory CD8+ T cells after Id-KLH, but not after KLH control vaccination, was observed. Similarly, responding patients across both arms were associated with upregulation of genes associated with T-cell activation. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of Id-KLH patients analyzed. In conclusion, in this combination immunotherapy approach, we observed a significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies.


2008 ◽  
Vol 19 (2) ◽  
pp. 701-710 ◽  
Author(s):  
Isabel María Olazabal ◽  
Noa Beatriz Martín-Cofreces ◽  
María Mittelbrunn ◽  
Gloria Martínez del Hoyo ◽  
Balbino Alarcón ◽  
...  

The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A730-A730
Author(s):  
Wenqing Jiang ◽  
Zhengyi Wang ◽  
Zhen Sheng ◽  
Jaeho Jung ◽  
Taylor Guo

Background4-1BB (CD137) is a co-stimulatory receptor that stimulates the function of multiple immune cells. Its ability to induce potent anti-tumor activity makes 4-1BB an attractive target for immuno-oncology. However, clinical development of a monospecific 4-1BB agonistic antibody has been hampered by dose-limiting hepatic toxicities. To minimize systemic toxicities, we have developed a novel Claudin18.2 (CLDN18.2) x 4-1BB bispecific antibody, TJ-CD4B (ABL111) that stimulates 4-1BB pathway only when it engages with Claudin 18.2, a tumor-associated antigen specifically expressed in gastrointestinal cancers. TJ-CD4B (ABL111) is now being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT04900818).MethodsTJ-CD4B (ABL111) was evaluated in vivo using the human 4-1BB knock-in mice bearing CLDN18.2 expressing MC38 tumor cells. Pharmacodynamic effects upon treatment were characterized in tumor tissue and blood. Immunophenotyping of the tumor microenvironment (TME) and peripheral blood was performed by flow cytometry. Soluble biomarkers were measured using Luminex-based multiplex assay. In-depth gene expression analysis was performed on primary human CD8+ T cells that were co-cultured with CLDN18.2 expressing cells in the presence of anti-CD3 using NanoString nCounter®. Pharmacokinetic (PK) and toxicity study were performed in cynomolgus monkeys.ResultsTJ-CD4B (ABL111) elicited complete tumor regression in 13 out of 18 MC38 tumor bearing mice given at a dose above 2 mg/kg. Dose-dependent anti-tumor activity was associated with enhanced T cell activation in TME and expansion of memory T cells in the peripheral blood. Increased CD8+ T cells number and proliferation were observed in both tumor nest and surrounding stroma while the level of soluble 4-1BB in the serum was also elevated in response to the treatment. In vitro gene expression analysis by Nanostring revealed TJ-CD4B(ABL111) effectively activated immune pathways characterized by IFN?-signaling and T cell inflammation. Preclinically, TJ-CD4B was well tolerated at the repeated doses up to 100 mg/kg/wk in cynomolgus monkeys without the adverse influence on the liver function which is generally affected by 4-1BB activation. Besides, no cytokine release or immune activation was observed in the periphery.ConclusionsTJ-CD4B (ABL111) is a novel CLDN18.2 dependent 4-1BB bispecific agonist antibody that induced T cell activation and memory response in tumor with CLDN18.2 expression, leading to a strong anti-tumor activity in vivo. TJ-CD4B did not induce systemic immune response nor hepatic toxicity due to the CLDN18.2 dependent 4-1BB stimulation. These data warrant the current clinical development in phase I trial to validate the safety properties and tumor specific responses.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A396-A396
Author(s):  
Lukasz Kuryk ◽  
Anne-Sophie Moller ◽  
Sandeep Kumar ◽  
Alexander Shoushtari ◽  
Luis Paz Ares ◽  
...  

BackgroundSolid tumors exhibit highly variable compositions of immune infiltrates. Therapeutic compounds driving uniform remodeling of tumor microenvironment (TME) across tumor types may improve the efficacy of cancer immunotherapy. ONCOS-102, a granulocyte-macrophage colony stimulating factor (GM-CSF)-expressing oncolytic adenovirus (Ad5/3-D24-GMCSF), was tested for its safety, therapeutic efficacy and capacity to remodel TME in recently completed phase I/II clinical studies in anti-PD-1 refractory melanoma (NCT03003676) and malignant pleural mesothelioma (MPM) (NCT02879669).MethodsBiopsies were obtained from tumor lesions of patients treated with intra-tumoral injections of ONCOS-102 in combination with chemotherapy or pembrolizumab for MPM and melanoma, respectively. Tumor immune infiltrates were analyzed by immunohistology using several antibody panels. On-treatment biopsies were compared to paired baseline samples as wells as to samples from control patients treated with chemotherapy alone in the case of MPM. Gene expression data obtained by next generation RNA sequencing were used to complement the immunohistology analysis and all results were correlated to clinical outcomes.ResultsComparative TME analysis of anti-PD-1 refractory melanoma and MPM tumors revealed noticeably lower baseline T-cell infiltration in mesothelioma. Thus, fractions of CD8+ T-cells were significantly below 10% in 80% of MPM biopsies while approaching or exceeding this level in 60% of melanoma baseline samples. Comparison of tumor biopsies obtained at baseline or on-treatment, demonstrated increased infiltration by both CD4+ and CD8+ T-cells in large proportions of melanoma (CD4+: 13/20 (65%); CD8+: 16/19 (84%) and MPM (CD4+: 10/15 (67%); CD8+: 9/15 (60%) tumor lesions in response to ONCOS-102. Frequencies of cytotoxic T-cells with high granzyme-B expression also increased in response to the treatment in both tumor types, in particular when assessed as percentage of total CD8+ T-cells. Other observed changes induced by ONCOS-102 in samples taken from CR, PR and SD patients with MPM or melanoma included increased CD8/Treg ratio and modulation of PD-L1 expression. Biological and clinical importance of these findings was further supported by correlation between modulation of several subsets of genes related to the process of T-cell activation, such as cytotoxic granule components and co-stimulatory molecules, and clinical response to ONCOS-102 in melanoma and both tumor response and overall survival in MPM patients.ConclusionsONCOS-102 drives pro-inflammatory modulation of immune TME across tumor types of different origins, anatomical locations and immunological baseline characteristics. Our data support potential of ONCOS-102 to serve as a potent immune sensitizing agent in combination therapies with various classes of immunomodulatory compounds and chemotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A691-A691
Author(s):  
Yupeng Wang ◽  
Chufan Cai ◽  
Dayana Rivadeneira ◽  
Alexander Muir ◽  
Greg Delgoffe

BackgroundWhile CD8 T cells are crucial for anti-tumor immunity, tumor infiltrating CD8 T cells encounter stressors which deviate their differentiation to a dysfunctional, exhausted phenotype. T cell functions are closely regulated by T cell metabolism, and the dysfunctional vasculature in tumor tissues and the deregulated metabolism of tumor cells lead to depletion of nutrients and accumulation of metabolic wastes in the tumor microenvironment (TME). Thus, the unbalanced levels of the nutrients and the metabolic wastes might skew the metabolism of T cells thus contributing to T cell dysfunction.MethodsOvalbumin-specific OT-I cells were activated with SIINFEKL/IL2 and cultured with IL2. The tumor interstitial fluid media (TIFM) was formulated based on the concentrations of the metabolites measured in the tumor interstitial fluid of pancreatic ductal adenocarcinoma.1 Purified arginine and phosphoethanolamine (PEtn) were used to change their levels in TIFM/RPMI1640 culture. Expression level of cytokines and PD-1 was measured by flow cytometry.ResultsWe sought to determine how T cells would differentiate, in vitro, if they were exposed only to the metabolites present in the TME. Using media formulated to model the metabolic composition of tumor interstitial fluid (TIFM),1 we show that CD8 T cells develop features of exhausted T cells in the TIFM culture: reduced proliferation, increased expression of PD-1 and decreased cytokine production. Using 'dropout' and 'add-back' approaches, we found arginine levels as a major contributor to the proliferation defect observed in TIFM-cultured T cells. Arginine was sufficient to restore proliferative capacity to T cells cultured in TIFM, but had no effect on the inhibited cytokine production. We then asked which metabolites were enriched in the TIFM, finding that PEtn, an intermediate in the ethanolamine branch of the Kennedy pathway and an oncometabolite enriched in the interstitial of many solid tumors, up-regulates PD-1 expression and compromises the cytokine production of the cells in culture. Depletion of Pcyt2, the metabolizing enzyme of PEtn and the rate limiting enzyme in the Kennedy pathway, makes CD8 T cells resistant to the effects of PEtn.ConclusionsOur data shows that the metabolic environment in the TME can be recapitulated in vitro and is sufficient to drive T cell dysfunction. Arginine depletion acts as a major inhibitor of T cell proliferation in the TME, but the oncometabolite PEtn drives a hypofunctional effector fate of T cells. Targeting PEtn metabolism via Pcyt2 depletion or inhibition is a potential target to reinvigorate T cells and enhance anti-tumor immunity.ReferenceSullivan MR, Danai LV, Lewis CA, Chan SH, Gui DY, Kunchok T, Dennstedt EA, Vander Heiden MG, Muir A. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife 2019;;8:e44235. doi: 10.7554/eLife.44235. PMID: 30990168; PMCID: PMC6510537.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3948
Author(s):  
Kazumasa Oya ◽  
Yoshiyuki Nakamura ◽  
Zhu Zhenjie ◽  
Ryota Tanaka ◽  
Naoko Okiyama ◽  
...  

The exact mechanisms of the imiquimod (IMQ)-induced antitumor effect have not been fully understood. Although both topical IMQ treatment and anti-PD-1 antibody may be used for primary skin lesions or skin metastases of various cancers, the efficacy of each monotherapy for these lesions is insufficient. Using a murine tumor model and human samples, we aimed to elucidate the detailed mechanisms of the IMQ-induced antitumor effect and analyzed the antitumor effect of combination therapy of topical IMQ plus anti-PD-1 antibody. Topical IMQ significantly suppressed the tumor growth of MC38 in wildtype mice. IMQ upregulated interferon γ (IFN-γ) expression in CD8+ T cells in both the lymph nodes and the tumor, and the antitumor effect was abolished in both Rag1-deficient mice and IFN-γ-deficient mice, indicating that IFN-γ produced by CD8+ T cells play a crucial role in the IMQ-induced antitumor effect. IMQ also upregulated PD-1 expression in T cells as well as PD-L1/PD-L2 expression in myeloid cells, suggesting that IMQ induces not only T-cell activation but also T-cell exhaustion by enhanced PD-1 inhibitory signaling. Combination therapy of topical IMQ plus anti-PD-1 antibody exerted a significantly potent antitumor effect when compared with each single therapy, indicating that the combination therapy is a promising therapy for the skin lesions of various cancers.


Sign in / Sign up

Export Citation Format

Share Document