scholarly journals Interactions Between Commensal Microbiota and Mucosal Immunity in Teleost Fish During Viral Infection With SVCV

2021 ◽  
Vol 12 ◽  
Author(s):  
Kai-Feng Meng ◽  
Li-Guo Ding ◽  
Sha Wu ◽  
Zheng-Ben Wu ◽  
Gao-Feng Cheng ◽  
...  

The mucosa of vertebrates is a particularly complex but dynamic environment in which the host constantly interacts with trillions of commensal microorganisms and pathogens. Although the internal and external mucosal microbiomes with immune defense of mammals have been well investigated, the relationship between mucosal microbes and their host’s immune responses has not been systematically understood in the early vertebrates. In this study, we compared the composition and distribution of mucosal microbiota in common carp (Cyprinus carpio), and found that there were significant differences of microbiota between in the internal (gut) and external mucosal (buccal mucosa, gills and skin) tissues. Next, we successfully constructed an infection model with spring viremia of carp virus (SVCV). Specifically, following viral infection, the immune and antiviral related genes showed different up-regulation in all selected mucosal tissues while significant morphological changes were only found in external tissues including buccal mucosa, gills and skin. Using 16S rRNA gene sequence, we revealed that the abundance of Proteobacteria in mucosal tissues including buccal mucosa, gills and gut showed increased trend after viral infection, whereas the abundance of Fusobacteria significantly decreased in gut. In addition, the loss of dominant commensal microorganisms and increased colonization of opportunistic bacteria were discovered in the mucosal surfaces indicating that a secondary bacterial infection might occur in these mucosal tissues after viral infection. Overall, our results firstly point out the distribution of internal and external mucosal microbiota and analyze the changes of mucosal microbiota in common carp after SVCV infection, which may indicated that the potential role of mucosal microbiota in the antiviral process in early vertebrates.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zheng-Ben Wu ◽  
Kai-Feng Meng ◽  
Li-Guo Ding ◽  
Sha Wu ◽  
Guang-Kun Han ◽  
...  

The crosstalk between the immune system and microbiota drives an amazingly complex mutualistic symbiosis. In mammals, the upper respiratory tract acts as a gateway for pathogen invasion, and the dynamic interaction between microbiota and mucosal immunity on its surface can effectively prevent disease development. However, the relationship between virus-mediated mucosal immune responses and microbes in lower vertebrates remains uncharacterized. In this study, we successfully constructed an infection model by intraperitoneally injecting common carp (Cyprinus carpio) with spring viremia of carp virus (SVCV). In addition to the detection of the SVCV in the nose and pharynx of common carp, we also identified obvious histopathological changes following viral infection. Moreover, numerous immune-related genes were significantly upregulated in the nose and pharynx at the peak of SVCV infection, after which the expression levels decreased to levels similar to those of the control group. Transcriptome sequencing results revealed that pathways associated with bacterial infection in the Toll-like receptor pathway and the Nod-like receptor pathway were activated in addition to the virus-related Rig-I-like receptor pathway after SVCV infection, suggesting that viral infection may be followed by opportunistic bacterial infection in these mucosal tissues. Using 16S rRNA gene sequencing, we further identified an upward trend in pathogenic bacteria on the mucosal surface of the nose and pharynx 4 days after SVCV infection, after which these tissues eventually reached new homeostasis. Taken together, our results suggest that the dynamic interaction between mucosal immunity and microbiota promotes the host to a new ecological state.


2020 ◽  
Author(s):  
Yaqiong Guo ◽  
Ronghua Luo ◽  
Yaqing Wang ◽  
Pengwei Deng ◽  
Min Zhang ◽  
...  

ABSTRACTCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) has given rise to a global pandemic. The gastrointestinal symptoms of some COVID-19 patients are underestimated. There is an urgent need to develop physiologically relevant model that can accurately reflect human response to viral infection. Here, we report the creation of a biomimetic human intestine infection model on a chip system that allows to recapitulate the intestinal injury and immune response induced by SARS-CoV-2, for the first time. The microengineered intestine-on-chip device contains human intestinal epithelium (co-cultured human intestinal epithelial Caco-2 cells and mucin secreting HT-29 cells) lined in upper channel and vascular endothelium (human umbilical vein endothelial cells, HUVECs) in a parallel lower channel under fluidic flow condition, sandwiched by a porous PDMS membrane coated with extracellular matrix (ECM). At day 3 post-infection of SARS-CoV-2, the intestine epithelium showed high susceptibility to viral infection and obvious morphological changes with destruction of intestinal villus, dispersed distribution of mucus secreting cells and reduced expression of tight junction (E-cadherin), indicating the destruction of mucous layer and the integrity of intestinal barrier caused by virus. Moreover, the endothelium exhibited abnormal cell morphology with disrupted expression of adherent junction protein (VE-cadherin). Transcriptional analysis revealed the abnormal RNA and protein metabolism, as well as activated immune responses in both epithelial and endothelial cells after viral infection (e.g., up-regulated cytokine genes, TNF signaling and NF-kappa B signaling-related genes). This bioengineered in vitro model system can mirror the human relevant pathophysiology and response to viral infection at the organ level, which is not possible in existing in vitro culture systems. It may provide a promising tool to accelerate our understanding of COVID-19 and devising novel therapies.


2017 ◽  
Vol 71 ◽  
pp. 353-358 ◽  
Author(s):  
Mikolaj Adamek ◽  
Dennis Hazerli ◽  
Marek Matras ◽  
Felix Teitge ◽  
Michal Reichert ◽  
...  

2016 ◽  
Vol 4 ◽  
pp. 435-445 ◽  
Author(s):  
Marouane Mahrouf ◽  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

2020 ◽  
Vol 67 (4) ◽  
Author(s):  
V.S. Jayasree ◽  
K. S. Sobhana ◽  
Priyanka Poulose ◽  
Keerthi R. Babu ◽  
S. Jasmine ◽  
...  

A halophilic bacterial strain T14 isolated from the mucus of coral Acropora sp. was found to be highly effective in degrading the pyrethroid pesticide, cyfluthrin. T14 was identified as Photobacterium ganghwense (GenBank Accession No. MT360254) based on phenotypic and biochemical characteristics as well as by 16S rRNA gene sequence analysis. The pyrethroid degrading efficiency of P. ganghwense T14 strain was examined under different culture conditions. It was observed that P. ganghwense T14 was able to utilise cyfluthrin as a sole carbon source and was found to grow on mineral medium with pesticide concentrations ranging from 10 to 100 mg l-1. Optimal temperature and pH conditions for efficient cyfluthrin degradation by P. ganghwense T14 were determined as 30° C and 8 respectively. Degradation of cyfluthrin by P. ganghwense T14 was quantitated by gas chromatography-tandem mass spectrometry (GC-MS/MS). Mineral medium supplemented with 100 mg l-1 cyfluthrin and inoculated with P. ganghwense T14 (106 cells ml-1) recorded 92.13% pesticide decomposition within 120 h. Cytotoxicity assay on a fish cell line EM4SpEx derived from the grouper Epinephelus malabaricus, revealed a drastic reduction in cyfluthrin toxicity as evidenced by reduction in the intensity of cell destruction as well as morphological changes when exposed to P. ganghwense T14 treated filtrate, in comparison with that of parent cyfluthrin filtrate. Results of the study clearly indicated potential bioremediative use of P. ganghwense T14 in cyfluthrin contaminated sites.


2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Ragnhild Inderberg Vestrum ◽  
Torunn Forberg ◽  
Birgit Luef ◽  
Ingrid Bakke ◽  
Per Winge ◽  
...  

The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.


Sign in / Sign up

Export Citation Format

Share Document