scholarly journals High-Resolution Carbonate System Dynamics of Netarts Bay, OR From 2014 to 2019

2021 ◽  
Vol 7 ◽  
Author(s):  
William Fairchild ◽  
Burke Hales

Netarts Bay is a shallow, temperate, tidal lagoon located on the northern coast of Oregon and the site of the Whiskey Creek Shellfish Hatchery (WCSH). Data collected with an autonomous continuous flow-through system installed at WCSH capable of high-resolution (1 Hz) partial pressure of aqueous CO2 (pCO2) and hourly total dissolved inorganic carbon (TCO2) measurements, with combined measurement uncertainties of < 2.0% and 0.5%, respectively, is analyzed over the 2014–2019 interval. Summer upwelling, wintertime downwelling, and in situ bay biogeochemistry represent significant modes of the observed variability in carbonate system dynamics. Summer upwelling is associated with large amplitude diel pCO2 variability, elevated TCO2 and alkalinity, but weak variability in salinity. Wintertime downwelling is associated with bay freshening by both local and remote sources, a strong tidal signature in salinity, TCO2, and alkalinity, with diel pCO2 variability much less amplified when compared to summer. Further, analysis of alkalinity-salinity relationships suggests multiple water masses inhabiting the bay during 1 year: mixing of end-members associated with direct precipitation, coastal rivers, southward displacement of the Columbia River plume, California Current surface and deep upwelled waters. The importance of in-bay processes such as net community metabolism during intervals of high productivity are apparent. These direct measurements of pCO2 and TCO2 have been useful to local hatchery owners who have monitored intake waters following historic seed-production failures related to high-CO2 conditions exacerbated by ocean acidification.

2005 ◽  
Vol 32 (2) ◽  
pp. 325-341 ◽  
Author(s):  
Alexander Brinker ◽  
H. Gerd Schröder ◽  
Roland Rösch

2020 ◽  
Vol 71 (3) ◽  
pp. 263 ◽  
Author(s):  
Catriona L. Hurd ◽  
John Beardall ◽  
Steeve Comeau ◽  
Christopher E. Cornwall ◽  
Jonathan N Havenhand ◽  
...  

‘Multiple drivers’ (also termed ‘multiple stressors’) is the term used to describe the cumulative effects of multiple environmental factors on organisms or ecosystems. Here, we consider ocean acidification as a multiple driver because many inorganic carbon parameters are changing simultaneously, including total dissolved inorganic carbon, CO2, HCO3–, CO32–, H+ and CaCO3 saturation state. With the rapid expansion of ocean acidification research has come a greater understanding of the complexity and intricacies of how these simultaneous changes to the seawater carbonate system are affecting marine life. We start by clarifying key terms used by chemists and biologists to describe the changing seawater inorganic carbon system. Then, using key groups of non-calcifying (fish, seaweeds, diatoms) and calcifying (coralline algae, coccolithophores, corals, molluscs) organisms, we consider how various physiological processes are affected by different components of the carbonate system.


2016 ◽  
Author(s):  
J. Cuxart ◽  
B. Wrenger ◽  
D. Martínez-Villagrasa ◽  
J. Reuder ◽  
M.O. Jonassen ◽  
...  

Abstract. The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB). The heterogeneities are estimated from satellite and model fields for scales near 1 kilometer or broader, while the smaller scales are estimated through direct measurements with remotely-piloted aircraft, thermal cameras and also by high-resolution modeling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than few kilometers. On the contrary, surface heterogeneities at the meter scale yield large values of the advection, which are probably only significant in the first centimeters above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometer scales.


1959 ◽  
Vol 14 (5) ◽  
pp. 809-812 ◽  
Author(s):  
Dean L. Franklin ◽  
Richard M. Ellis ◽  
R. F. Rushmer

Instantaneous blood flow through the thoracic aorta was monitored continuously during spontaneous activity in intact dogs by means of a new, pulsed, ultrasonic flowmeter. Integrated flow per stroke, accumulated flow per unit time and heart rate were simultaneously derived by means of electronic computers. During treadmill exercise at 3 mph on a 5% grade, the heart rate increased by two- or threefold, but the aortic flow per stroke was only slightly increased. This observation was confirmed by direct measurements, of left ventricular diameter. An increase in stroke volume is not an essential feature of the cardiac response to exercise in these experiments. Submitted on December 15, 1958


2020 ◽  
Author(s):  
Maria Teresa Guerra ◽  
Carlos Rocha

<p>Organic and inorganic whole system metabolism for two Irish coastal areas were compared to evaluate carbonate system resilience to acidification. The two systems are characterized by contrasting watershed input types and composition. Kinvara Bay is fed by Submarine Groundwater Discharge (SGD) derived from a karstic catchment while Killary Harbour is fed by river discharge draining a siliciclastic catchment. Freshwater sources to sea have distinct Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) concentrations, higher and lower than the open ocean, respectively, but both evidence seasonally variable low pH, ranging from 6.20 to 7.50. Retention of TA and DIC was calculated for the two areas using LOICZ methodology. In Kinvara bay, annually averaged retention of DIC was greater than for TA (5 × 10<sup>4</sup> and 1.5 × 10<sup>5</sup> mol d<sup>-1</sup>), suggesting the system is acidifying further. Conversely, Killary Harbour shows negative TA and DIC retention, with DIC:TA <1, suggesting an internal buffer against ocean acidification is operating.</p><p>Net Community Production (NCP) was calculated for both systems using Dissolved Oxygen data. Subsequently, we estimated Net Community Calcification (NCC) from the ratio between TA and DIC. NCP was always positive in Killary Harbour with an average of 318 mmol O<sub>2</sub> m<sup>-2 </sup>d<sup>-1</sup> (equivalent to 89 mol C m<sup>-2</sup> y<sup>-1</sup>). However, Kinvara Bay shows relatively lower positive NCP in spring and summer (average of 46 mmol O<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>), but negative NCP in autumn and winter. Therefore, Kinvara Bay’s Total Organic Carbon (TOC) production was low, at ~21 g m<sup>-2</sup> y<sup>-1</sup> and not enough to overcome acidification driven by the SGD source composition. These results emphasize the complexity of interactions between the drivers of coastal acidification rate, affecting our ability to accurately assess the resilience of the carbonate system in these areas to ocean acidification pressure in the future.</p>


2020 ◽  
Author(s):  
Anna Canning ◽  
Arne Körtzinger

<p>Wetlands are known to be significant sources for CH<sub>4</sub>, yet vary between potential sources and sinks for CO<sub>2</sub>. However, in regards to the budgets and processes, they are still considered to have high uncertainties, inconsistencies and a general lack of data overall. One key wetland region in Europe is the Danube River Delta. It is the second largest delta in Europe, consisting of the vastest compact reed bed zone in the world, intertwined with rivers, lakes and channels. It is sourced with water from a drainage basin of 817,000 km<sup>2</sup>, with the Danube River originating in Germany before travelling 2,857 km to the Black Sea. However, considering the potential pollution effects within this terminal zone, as well as the delta being one of the most important wetlands in Europe for its ecological value alone (and therefore fragile), few studies have focused on the dynamics within the carbon cycle. During 2017, three field campaigns across three seasons measured high resolution, small-scale spatial and temporal variability for pCO<sub>2</sub>, CH<sub>4</sub>, O<sub>2</sub> and ancillary parameters within the lakes, rivers and channels with the use of a surface water flow-through package. Given the flexibility of the system, we were able to conduct day-night cycles and extensive mapping transects. We discovered day-night cycles showing significant variation of CH<sub>4</sub> concentrations within the lakes and channels, as well ‘hot spot’ anomalies showing potential ground water sourcing and extreme CH<sub>4</sub> concentrations flowing in from the reed beds. Although reasoning for supersaturation in surface waters are under continuous debate, we conclude a potential reason for such dynamic diel variation within the lake may be due to biomass decomposition and extensive macrophyte concentrations creating a temporarily anoxic zone during the day with mixing during the night, such as previously suggested. On top of this, with the use of discrete data collected from the same water source simultaneously, we were able to model alkalinity, dissolved inorganic carbon and pH to examine both 24 h cycles across lakes and day-night dynamics, giving an in-depth glimpse into the carbonate system. Through the extensive mapping, we successful extracted diel variations for pCO<sub>2</sub> and the carbonate species across the lakes with the use of just day-light data, allowing for spatial and temporal variations to be distinguished. We confirm the boundaries between channels and lakes are intertwined as much as they are with the wetlands, and how small extreme anomalies can only begin to be explained with such high-resolution data, even more so in combination with modelled data.</p>


Sign in / Sign up

Export Citation Format

Share Document