scholarly journals Response of Nitrate Processing to Bio-labile Dissolved Organic Matter Supply Under Variable Oxygen Conditions in a Sandy Beach Seepage Face

2021 ◽  
Vol 8 ◽  
Author(s):  
Shan Jiang ◽  
Jie Jin ◽  
Ying Wu ◽  
Yixue Zhang ◽  
Yongjun Wei ◽  
...  

Supply of bio-labile dissolved organic matter (DOM) has been assumed to be a key factor for the intensity of nitrate (NO3–) removal in permeable coastal sediments. In the present study, a series of flow through reactor experiments were conducted using glucose as a N-free bio-labile DOM source to permeable sediments from a sandy beach seepage face to identify its effect on benthic NO3– removal. The results revealed a shift from the dominance of NO3– production to removal processes when NO3– input concentration increased from 10 to 80 μM under oxic conditions. Sediment microbiota information suggests that nitrification (e.g., Nitrosomonas and Nitrososphaera) and denitrification (e.g., Marinobacter and Bacillus) were dominant pathways for benthic NO3– production and removal in the studied sediment. Compared with the active response of sediment microbiota to NO3– additions, the supply of glucose (approximately 300 μM final concentration added) did not significantly change the NO3– removal efficiency under aerobic conditions (dissolved oxygen saturation approximately 100%). Similarly, an insignificant increase of NO3– removal rate after glucose amendment of the circulating water was obtained when dissolved oxygen (DO) saturation decreased to approximately 70% in the input solution. When DO at the input solution was decreased to 30% saturation (sub-oxic conditions), the removal rate of NO3– in the group amended with glucose increased, suggesting that glucose stimulated denitrifiers. These results revealed that NO3– removal relied mainly on the anaerobic environment at particle surfaces, with a dependence on the sedimentary organic matter as an electron supplier under bulk aerobic conditions, while the bio-labile DOM was consumed mainly by aerobic respiration instead of stimulating NO3– reduction. However, the respiration triggered by the over-supply of bio-labile DOM reduced the DO in the porewater, likely depressing the activity of aerobic reactions in the permeable sediment. At this point, the benthic microbiota, especially potential denitrifiers, shifted to anaerobic reactions as the key to support nitrogen metabolism. The glucose amendment benefited NO3– reduction at this point, under sub-oxic conditions.

1998 ◽  
Vol 38 (8-9) ◽  
pp. 179-188 ◽  
Author(s):  
K. F. Janning ◽  
X. Le Tallec ◽  
P. Harremoës

Hydrolysis and degradation of particulate organic matter has been isolated and investigated in laboratory scale and pilot scale biofilters. Wastewater was supplied to biofilm reactors in order to accumulate particulates from wastewater in the filter. When synthetic wastewater with no organic matter was supplied to the reactors, hydrolysis of the particulates was the only process occurring. Results from the laboratory scale experiments under aerobic conditions with pre-settled wastewater show that the initial removal rate is high: rV, O2 = 2.1 kg O2/(m3 d) though fast declining towards a much slower rate. A mass balance of carbon (TOC/TIC) shows that only 10% of the accumulated TOC was transformed to TIC during the 12 hour long experiment. The pilot scale hydrolysis experiment was performed in a new type of biofilm reactor - the B2A® biofilter that is characterised by a series of decreasing sized granular media (80-2.5 mm). When hydrolysis experiments were performed on the anoxic pilot biofilter with pre-screened wastewater particulates as carbon source, a rapid (rV, NO3=0.7 kg NO3-N/(m3 d)) and a slowler (rV, NO3 = 0.3 kg NO3-N/(m3 d)) removal rate were observed at an oxygen concentration of 3.5 mg O2/l. It was found that the pilot biofilter could retain significant amounts of particulate organic matter, reducing the porosity of the filter media of an average from 0.35 to 0.11. A mass balance of carbon shows that up to 40% of the total incoming TOC accumulates in the filter at high flow rates. Only up to 15% of the accumulated TOC was transformed to TIC during the 24 hour long experiment.


2015 ◽  
Vol 176 ◽  
pp. 150-163 ◽  
Author(s):  
Michael Seidel ◽  
Melanie Beck ◽  
Janek Greskowiak ◽  
Thomas Riedel ◽  
Hannelore Waska ◽  
...  

2008 ◽  
Vol 57 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Kyung-Nan Min ◽  
Sarina J. Ergas ◽  
Anna Mermelstein

This study investigated the impact of dissolved oxygen (DO) concentration on membrane filtering resistance, soluble organic matter (SOM) and extracellular polymeric substance (EPS) characteristics in a membrane bioreactor (MBR). A laboratory-scale MBR was operated under DO limited (0.2 mg L−1 DO) and fully aerobic (3.7 and 5.4 mg L−1 DO) conditions. Membrane filtering resistance was determined for the mixed liquor suspended solids (MLSS) and for resuspended microbial biomass after removing SOM. Regardless of the DO concentration, the cake resistance (Rc) was approximately 95 percent of the total resistance (Rt). The membrane cake resistance was found to decrease significantly after removing the SOM. The total resistance caused by the resuspended biomass was 29 percent of that caused by the MLSS under DO limited conditions, while the total resistance caused by resuspended biomass was 41 to 48 percent of that caused by the MLSS under fully aerobic conditions. Under DO limited conditions, SOM in the MLSS contained a larger amount of high molecular weight compounds, leading to higher cake resistance than under fully aerobic conditions. There was significant variation in the molecular weight fractions of the EPS, with no clear relationship with DO concentration. There was also no distinct relationship between membrane filtering resistance and molecular weight fraction of the EPS.


2014 ◽  
Vol 989-994 ◽  
pp. 603-606 ◽  
Author(s):  
Yang Yu ◽  
Hai Jiao Yu ◽  
Chen Ci Ma

The experiment uses municipal sewage as the research object and runs SBR reactor in completely aerobic conditions. Through controlling different of DO concentration and COD concentration, we study spreading comparison. The results show that when DO concentration was 1mg/L, the removal effect of aerobic granular sludge process in SBR treating municipal sewage was best, the average removal rate of COD, ammonia nitrogen, total nitrogen and phosphorous was 90.12%,98.95%,87.65% and 83.74% respectively. When COD concentration of influent was about 400mg/L, the treatment effects of aerobic granular sludge for COD, ammonia nitrogen, total nitrogen and phosphorous were all better, the average removal rate was up to 92.33%,98.83%,88.17% and 80.25% respectively.


2004 ◽  
Vol 68 (20) ◽  
pp. 4099-4111 ◽  
Author(s):  
Tomoko Komada ◽  
Clare E. Reimers ◽  
George W. Luther ◽  
David J. Burdige

2018 ◽  
Vol 25 (11) ◽  
pp. 10654-10667
Author(s):  
Shan Jiang ◽  
J. Severino P. Ibánhez ◽  
Carlos Rocha

2010 ◽  
Vol 55 (2) ◽  
pp. 857-871 ◽  
Author(s):  
Lindsay Chipman ◽  
David Podgorski ◽  
Stefan Green ◽  
Joel Kostka ◽  
William Cooper ◽  
...  

2015 ◽  
Vol 72 (8) ◽  
pp. 1411-1420 ◽  
Author(s):  
Ronghua Xu ◽  
Huase Ou ◽  
Xubiao Yu ◽  
Runsheng He ◽  
Chong Lin ◽  
...  

This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r = 0.921, n = 60, P < 0.01) and DOC (r = 0.959, n = 60, P < 0.01) and significant correlation (r = 0.875, n = 60, P < 0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment.


Sign in / Sign up

Export Citation Format

Share Document