scholarly journals Sampling Constraints and Variability in the Analysis of Bacterial Community Structures in the Sea Surface Microlayer

2021 ◽  
Vol 8 ◽  
Author(s):  
Shu-Kuan Wong ◽  
Shotaro Suzuki ◽  
Yingshun Cui ◽  
Ryo Kaneko ◽  
Kazuhiro Kogure ◽  
...  

The sea surface microlayer (SML) is a thin surface film located at the interface between oceans and the atmosphere. In this study, three SML samplers—polycarbonate membrane (PC), glass plate (GP), and drum sampler (DS)—were used to collect microbiological DNA samples for molecular analysis. Among the three samplers, DS only took half the time to sample the SML compared to GP while PC were able to sample the thinnest SML depth. Biological matter and distinct bacterial communities in the SML were apparent during low wind conditions in samples collected by three samplers. Signs of biological matter [transparent exopolymer particles (TEP) and chlorophyll-a concentrations] depletion, and an increased similarity in the biological communities of the SML and underlying water (UW), were more pronounced during high wind speed conditions in samples collected by GP and DS. GP samples had lower biological matter enrichment than DS samples compared with UW. The depletion of biological matter in GP samples were more apparent during periods of high chl-a concentrations in the SML. In contrast, PC was able to consistently sample an SML community distinct from that of the UW, regardless of wind conditions. Bacterial community DNA samples obtained by the three SML samplers showed relatively consistent patterns of community structure, despite large fluctuations between seasons (summer vs. winter) and layers (SML vs. UW) being observed. Although no SML-specific taxon was detected in this study, a comparison of the representation of taxonomic groups in each sample suggested that certain taxa (15 orders) were specifically enriched or depleted in the SML, especially taxa belonging to Actinobacteria, Cyanobacteria, Deferribacteria, and Proteobacteria. This trend was consistent regardless of sampling method, implying that these bacterial groups are key taxa in the biogeochemical processes occurring at the air-sea interface.

Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Alina M. Ebling ◽  
William M. Landing

Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. In this study, samples of aerosols, sea surface microlayer, and underlying water column were collected in the Florida Keys during a dusty season (July 2014) and non-dusty season (May 2015) and analyzed for the dissolved and particulate elements Al, Fe, Ni, Cu, Zn, and Pb. Microlayer samples were collected using a cylinder of ultra-pure SiO2 (quartz glass), a novel adaptation of the glass plate technique. A significant dust deposition event occurred during the 2014 sampling period which resulted in elevated concentrations of trace elements in the microlayer. Residence times in the microlayer from this event ranged from 12 to 94 minutes for dissolved trace elements and from 1.3 to 3.4 minutes for particulate trace elements. These residence times are potentially long enough for the atmospherically derived trace elements to undergo chemical and biological alterations within the microlayer. Characterizing the trace element distributions within the three regimes is an important step towards our overall goals of understanding the rates and mechanisms of the solubilization of trace elements following aeolian dust deposition and how this might affect microorganisms in surface waters.


2019 ◽  
Author(s):  
Leon King ◽  
Ieuan J. Roberts ◽  
Liselotte Tinel ◽  
Lucy J. Carpenter

Abstract. The surface of the ocean is a critical yet little understood interface that covers more than 70 % of the Earth's surface. Evidence is emerging that the so-called sea surface microlayer (SML) – the thin film of the ocean surface which is enriched in surface active material and contains large chemical, physical and biological gradients that separate it from the underlying seawater – plays an important role in regulating the air-sea exchange of gases and aerosols. Indeed, recent studies have suggested that (a) there is a ubiquitous enrichment of surfactants in the SML even at high wind speeds; (b) surfactants exert a control on air-sea CO2 exchange at the ocean basin scale, even at high wind, high latitude oceans, and (c) interfacial photochemistry within the SML serves as a major global abiotic source of volatile organic compounds (VOCs), competitive with emissions from marine biology. These conclusions are based on measurements of surfactant activity (SA) from alternating current (AC) voltammetry, showing enrichment of SA in the SML compared to subsurface waters at the ocean basin scale even at high wind speeds, and a relationship between SA and suppression of air-sea gas exchange. SA is calibrated using the large non-ionic surfactant Triton X-100 (TX-100) and expressed in concentration units of TX-100 equivalents. Here, we show that the response of SA-voltammetry varies widely for different surfactants, depending on the surfactant's molecular weight and its charge. Further, even at short deposition times of 15 s, the response becomes saturated above total surfactant concentrations of 1–2 mg L-1, which are at the high end of those observed in the SML. This behaviour was also observed when comparing measurements of seawater and lake water by SA voltammetry to surface film pressure (Δγ) measured by tensiometry. These two different methods for assessing the presence of surfactants showed that, while SA generally increases as surface film pressure increases, the correlation is poor and SA values plateau above ∼2 mg L-1 TX-100 eq. The implications of these results are that SA might not accurately capture variations in soluble and insoluble surfactants present in ocean waters.


2019 ◽  
Author(s):  
Janina Rahlff ◽  
Christian Stolle ◽  
Helge-Ansgar Giebel ◽  
Nur Ili Hamizah Mustaffa ◽  
Oliver Wurl ◽  
...  

AbstractThe occurrence of foams at oceans’ surfaces is patchy and generally short-lived but a detailed understanding of bacterial communities inhabiting sea foams is lacking. Here we investigated how marine foams differ from the sea-surface microlayer (SML), a <1 mm thick layer at the air-sea interface and underlying water from 1 m depth. Samples of sea foams, SML and underlying water collected from the North Sea and Timor Sea indicated that foams were often characterized by a high abundance of small eukaryotic phototrophic and prokaryotic cells as well as a high concentration of surface-active substances (SAS). Amplicon sequencing of 16S rRNA (gene) revealed a distinctive foam bacterial community compared to SML and underlying water, with high abundance of Gammaproteobacteria. Especially Pseudoalteromonas and Vibrio, typical SML dwellers, were highly abundant, active foam inhabitants and thus might enhance foam formation and stability by producing SAS. Despite a clear difference in the overall bacterial community composition between foam and SML, the presence of SML bacteria in foams supports previous assumptions that foam is strongly influenced by the SML. We conclude that active and abundant bacteria from interfacial habitats potentially contribute to foam formation and stability, carbon cycling and air-sea exchange processes in the ocean.One-sentence summaryFloating foams at the oceans’ surface have a unique bacterial community signature in contrast to sea-surface microlayer and underlying water but receive and select for bacterial inhabitants from surface habitats.


Science ◽  
1995 ◽  
Vol 270 (5238) ◽  
pp. 897-898
Author(s):  
Mark M. Littler ◽  
Diane S. Littler

Science ◽  
1995 ◽  
Vol 270 (5238) ◽  
pp. 897-897
Author(s):  
M. S. Hale ◽  
J. G. Mitchell

2018 ◽  
Author(s):  
Jonathan P. D. Abbatt ◽  
W. Richard Leaitch ◽  
Amir A. Aliabadi ◽  
Alan K. Bertram ◽  
Jean-Pierre Blanchet ◽  
...  

Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013 . (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water and the overlying atmosphere in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source. (2) Evidence was found of widespread particle nucleation and growth in the marine boundary layer in the CAA in the summertime. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from sea bird colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic material (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow.


Sign in / Sign up

Export Citation Format

Share Document