scholarly journals Characterization and Function Analysis of β, β-carotene-9′, 10′-oxygenase 2 (BCDO2) Gene in Carotenoid Metabolism of the Red Shell Hard Clam (Meretrix meretrix)

2021 ◽  
Vol 8 ◽  
Author(s):  
Lulu Fu ◽  
Heming Shi ◽  
Wenfang Dai ◽  
Hanhan Yao ◽  
Yongbo Bao ◽  
...  

The relationship between carotenoid and shellfish shell color has gained increasing attention. β, β-carotene-9′,10′-oxygenase 2 (BCDO2) is a key enzyme in animal carotenoid metabolism, and its accumulation affects the change in body color, as demonstrated in mammals, birds, and fish. However, it is unclear whether BCDO2 is involved in the formation of the red shell color of clam. To explore the molecular structure and biological function of BCDO2 gene in the process of carotenoids accumulation, in this study, the BCDO2 from hard clam Meretrix meretrix (designated as Mm-BCDO2) was cloned and characterized, and the single-nucleotide polymorphisms (SNPs) associated with shell color were detected. The results of qRT-PCR indicated that Mm-BCDO2 gene was expressed in all six tested tissues, and the expression of mantle was significantly higher than other tissues (P < 0.05). The association analysis identified 20 SNPs in the exons of Mm-BCDO2, among which three loci (i.e., c.984A > C, c.1148C > T, and c.1187A > T) were remarkably related (P < 0.05) to the shell color of clam. The western blot analysis revealed that the expression level of Mm-BCDO2 in the mantle of red shell clams was stronger than that of white shell clams (P < 0.05). Further, the immunofluorescence analysis indicated that the single-layer columnar cells at the edge of the mantle were the major sites for the Mm-BCDO2 secretion. This study explored the potential impacts of BCDO2 gene on the shell color of M. meretrix, which provided a theoretical basis for a better understanding of the important role of BCDO2 in carotenoid metabolism.

2010 ◽  
Vol 2 (S1) ◽  
pp. 69-72 ◽  
Author(s):  
Hongjun Li ◽  
Dan Zhu ◽  
Xianggang Gao ◽  
Yun-feng Li ◽  
Jian Wang ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Hanhan Yao ◽  
Baoyue Cui ◽  
Xiaoying Li ◽  
Zhihua Lin ◽  
Yinghui Dong

Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 83
Author(s):  
Lulu Fu ◽  
Qiudie Chi ◽  
Yongbo Bao ◽  
Hanhan Yao ◽  
Zhihua Lin ◽  
...  

It has been demonstrated that the sekelsky mothers against decapentaplegic homolog 3 (Smad3) plays an important role in the growth and development of vertebrates. However, little is known about the association between the Smad3 gene and the growth traits of mollusks. In this study, Smad3 from the hard clam Meretrix meretrix (Mm-Smad3) was cloned, characterized, and screened for growth-related single nucleotide polymorphisms (SNPs) in its exons. The full-length cDNA of Mm-Smad3 was 1938 bp, encoding a protein with 428 amino acid residues. The protein sequence included an MH1 (27–135 aa) and MH2 domain (233–404 aa). Promoter analysis showed that the promoter sequence of Mm-Smad3 was 2548 bp, and the binding sites of Pit-1a, Antp, Hb, and other transcription factors are related to the growth and development of hard clams. The phylogenetic tree was divided into two major clusters, including mollusks and vertebrate. The expression level of Mm-Smad3 was predominantly detected in the mantle and foot, while extremely less expression was observed in the digestive gland. The low expression level of Mm-Smad3 was detected at the stages of unfertilized mature eggs, fertilized eggs, four-cell embryos, blastula, gastrulae, trochophore, and D-shaped larvae, whereas an opposite trend was observed regarding the highest expression at the umbo larvae stage (p < 0.05). In the mantle repair experiment, the time-course expression profiles showed that compared to the expression level at 0 h, Mm-Smad3 significantly decreased at 6 h (p < 0.05) but increased at 12 and 48 h. Further, the association analysis identified 11 SNPs in the exons of Mm-Smad3, of which three loci (c.597 C > T, c.660 C > T, c.792 A > T) were significantly related to the growth traits of clam (p < 0.05). Overall, our findings indicated that Mm-Smad3 is a growth-related gene and the detected SNP sites provide growth-related markers for molecular marker-assisted breeding of this species.


2019 ◽  
Vol 149 (3) ◽  
pp. 381-397 ◽  
Author(s):  
Nancy E Moran ◽  
Jennifer M Thomas-Ahner ◽  
Jessica L Fleming ◽  
Joseph P McElroy ◽  
Rebecca Mehl ◽  
...  

ABSTRACT Background Human plasma and tissue lycopene concentrations are heterogeneous even when consuming controlled amounts of tomato or lycopene. Objectives Our objective is to determine whether single nucleotide polymorphisms (SNPs) in or near known or putative carotenoid metabolism genes [β-carotene 15,15’ monooxygenase 1 (BCO1), scavenger receptor class B type 1 (SCARB1), ATP-binding cassette transporter subfamily A member 1 (ABCA1), microsomal triglyceride transfer protein (MTTP), apolipoprotein B-48, elongation of very long chain fatty acids protein 2 (ELOVL2), and ATP-binding cassette subfamily B member 1 (ABCB1), and an intergenic superoxide dismutase 2, mitochondrial-associated SNP] are predictive of plasma lycopene responses to steady state tomato juice consumption. Methods Secondary linear regression analyses of data from a dose-escalation study of prostate cancer patients [n = 47; mean ± SEM age: 60 ± 1 y; BMI (in kg/m2): 32 ± 1] consuming 0, 1, or 2 cans of tomato-soy juice/d (163 mL/can; 20.6 mg lycopene 1.2 mg β-carotene/can) for 24 ± 0.7 d before prostatectomy were conducted to explore 11 SNP genotype effects on the change in plasma lycopene and plasma and prostate tissue concentrations of lycopene, β-carotene, phytoene, and phytofluene. Results Two BCO1 SNP genotypes were significant predictors of the change in plasma lycopene, with SNP effects differing in magnitude and direction, depending on the level of juice intake (rs12934922 × diet group P = 0.02; rs6564851 × diet group P = 0.046). Further analyses suggested that plasma β-carotene changes were predicted by BCO1 rs12934922 (P &lt; 0.01), prostate lycopene by trending interaction and main effects of BCO1 SNPs (rs12934922 × diet group P = 0.09; rs12934922 P = 0.02; rs6564851 P = 0.053), and prostate β-carotene by BCO1 SNP interaction and main effects (rs12934922 × diet group P = 0.01; rs12934922 P &lt; 0.01; rs7501331 P = 0.02). Conclusions In conclusion, SNPs in BCO1 and other genes may modulate human plasma and prostate tissue responses to dietary lycopene intake and warrant validation in larger, human controlled feeding intervention and cohort studies. Genetic variants related to carotenoid metabolism may partially explain heterogeneous human blood and tissue responses and may be critical covariates for population studies and clinical trials. This trial was registered at clinicaltrials.gov as NCT01009736.


2020 ◽  
Vol 8 (3) ◽  
pp. 103-112
Author(s):  
Atefeh SADEGHI SHERMEH ◽  
Majid KHOSHMIRSAFA ◽  
Ali-Akbar DELBANDI ◽  
Payam TABARSI ◽  
Esmaeil MORTAZ ◽  
...  

Introduction: Tuberculosis (TB) and especially resistant forms of it have a substantial economic burden on the community health system for diagnosis and treatment each year. Thus, investigation of this field is a priority for the world health organization (WHO). Cytokines play important roles in the relationship between the immune system and tuberculosis. Genetic variations especially single nucleotide polymorphisms (SNPs) impact cytokine levels and function against TB. Material and Methods: In this research SNPs in IFN-γ (+874 T/A) and IL-10 (-592 A/C) genes, and the effects of these SNPs on cytokine levels in a total of 87 tuberculosis patients and 100 healthy controls (HCs) were studied. TB patients divided into two groups: 1) 67 drug-sensitive (DS-TB) and 2) 20 drug-resistant (DR-TB) according to drug sensitivity test using polymerase chain reaction (PCR). For the genotyping of two SNPs, the PCR-based method was used and IFN-γ and IL-10 levels were measured by ELISA in pulmonary tuberculosis (PTB) and control group. Results: In -592A/C SNP, only two genotypes (AA, AC) were observed and both genotypes showed statistically significant differences between DR-TB and HCs (p=0.011). IL-10 serum levels in PTB patients were higher than HCs (p=0.02). The serum levels of IFN-γ were significantly higher in DS-TB patients than that of the other two groups (p<0.001); however, no significant differences were observed for allele and genotype frequencies in IFN-γ +874. Conclusions: Our results suggest that the SNP at -592 position of IL-10 gene may be associated with the susceptibility to DR-TB. However, further investigation is necessary. Keywords: Polymorphism, IFN-γ, IL-10, tuberculosis, drug-resistant tuberculosis


2021 ◽  
Vol 534 ◽  
pp. 206-211
Author(s):  
Jianzhong Huang ◽  
Xiaoqiu Wu ◽  
Kaiting Sun ◽  
Zhiyong Gao

2021 ◽  
Vol 234 ◽  
pp. 105023
Author(s):  
Ruishen Fan ◽  
Gui Cai ◽  
Xuanyuan Zhou ◽  
Yuxin Qiao ◽  
Jiabao Wang ◽  
...  

2021 ◽  
Vol 35 (1) ◽  
pp. 862-872
Author(s):  
Chunliu Li ◽  
Dejia Hou ◽  
Lin Zhang ◽  
Xiaohong Li ◽  
Jiangbo Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document