scholarly journals Biological Abundance and Diversity in Organic-Rich Sediments From a Florida Barrier Island Lagoon

2021 ◽  
Vol 8 ◽  
Author(s):  
Kate M. Fuller ◽  
Austin L. Fox ◽  
Charles A. Jacoby ◽  
John H. Trefry

Organic-rich sediments in estuaries and the coastal ocean are often a product of land clearing, runoff of excess nutrients and other human activities. They can harbor pollutants, oxygen-consuming microbes and toxic hydrogen sulfide (H2S), thereby creating a hostile environment for infauna. In one barrier island lagoon, the Indian River Lagoon (IRL), Florida, layers of organic-rich sediments have increased substantially in thickness and areal extent over the past 60 years. Geochemical properties of these muddy sediments have been described; however, less is known about their habitability. We analyzed infauna and geochemical properties of 102 samples taken during wet and dry seasons at 17 locations spanning 60 km of the lagoon. We quantified infaunal abundance and diversity (Shannon-Wiener, H′) and determined Pearson’s correlation coefficients for effective number of species (ENS = eH′) vs. sediment porosity (ϕ = 0.69–0.95), organic carbon (1–8%), nitrogen (0.1–0.7%), silt + clay (16–99%), porewater H2S (5–3,600 μM), and other environmental variables. Small bivalves accounted for 70% of the organisms collected, followed by gastropods, polychaetes and other biota. The bivalves were predominantly Macoma spp., Mulinia lateralis and Parastarte triquetra with average abundances of 3,896, 2,049, and 926 individuals per m2, respectively. High abundance of some species, such as Macoma, showed that these opportunists had adapted to poor quality sediments. More than two-thirds of the 35 species collected were present at <100 individuals per m2 of sediment. Cluster analysis identified four groups of stations with significantly different geochemical properties. Permutation analyses of variance indicated that the four groups also represented statistically different infaunal communities. Diversity decreased with increasing sediment concentrations of organic carbon, nitrogen and silt + clay; however, community richness at our most prolific station along the perimeter of muddy deposits was ∼7 times lower than found previously in sandy sediments from the IRL. The results identified areas where infaunal communities have experienced the greatest stress due to accumulation of organic-rich sediments. Results from this study help support management plans for remediation of organic-rich mud and improvement of sediment and water quality, especially in areas identified with low ENS.

2021 ◽  
Author(s):  
Matthew C. Pace ◽  
David M. Bailey ◽  
David W. Donnan ◽  
Bhavani E. Narayanaswamy ◽  
Hazel J. Smith ◽  
...  

Abstract. High quality quantitative maps of seabed sedimentary physical and geochemical properties have numerous research and conservation applications, including habitat and ecosystem modelling, marine spatial planning and ecosystem service mapping. However, such maps are lacking for many ecologically and economically important marine areas. Using legacy data supplemented by measurements from recent benthic surveys, modelled hydrodynamic variables and high resolution bathymetry, quantitative maps for the top 10 cm of seabed sediment were generated via a combination of statistical and machine-learning techniques for the Firth of Clyde, a semi-enclosed coastal sea on the west coast of Scotland. The maps include sediment fractions of mud, sand and gravel, whole-sediment median grain size, sediment permeability and porosity, rates of natural seabed abrasion, and sediment particulate organic carbon and nitrogen content. Properties were mapped over an unstructured grid, so that very high resolutions were achieved close to the coastlines, where sediments may be expected to be spatially heterogeneous. Overall, the maps reveal extensive areas of very low sediment permeability coupled with low rates of natural seabed disturbance. Moreover, muddy sediments in the inner Firth of Clyde, Inchmarnock Water and the sea lochs are enriched in organic carbon and nitrogen relative to the sediments of the outer Firth of Clyde. As a demonstration of the value of these maps, the standing stock of organic carbon and nitrogen in the surficial sediments of the Clyde was calculated. The Clyde stores 3.42 and 0.33 million tonnes of organic carbon and nitrogen in the top 10 cm of seabed sediment, respectively, substantially contributing to Scotland’s coastal and shelf blue carbon stocks. Data products are available from: https://doi.org/10.15129/2003faa2-ee93-4c11-bb16-48485f5f136d.


Wetlands ◽  
2010 ◽  
Vol 30 (4) ◽  
pp. 725-734 ◽  
Author(s):  
Christina E. Stringer ◽  
Mark C. Rains ◽  
Sarah Kruse ◽  
Dennis Whigham

2021 ◽  
Vol 13 (12) ◽  
pp. 5847-5866
Author(s):  
Matthew C. Pace ◽  
David M. Bailey ◽  
David W. Donnan ◽  
Bhavani E. Narayanaswamy ◽  
Hazel J. Smith ◽  
...  

Abstract. High-quality quantitative maps of seabed sedimentary physical and geochemical properties have numerous research and conservation applications, including habitat and ecosystem modelling, marine spatial planning, and ecosystem service mapping. However, such maps are lacking for many ecologically and economically important marine areas. Using legacy data supplemented by measurements from recent benthic surveys, modelled hydrodynamic variables, and high-resolution bathymetry, quantitative maps for the top 10 cm of seabed sediment were generated via a combination of statistical and machine-learning techniques for the Firth of Clyde, a semi-enclosed coastal sea on the west coast of Scotland. The maps include sediment fractions of mud, sand, and gravel; whole-sediment median grain size; sediment permeability and porosity; rates of natural seabed abrasion; and sediment particulate organic carbon and nitrogen content. Properties were mapped over an unstructured grid so that very high resolutions were achieved close to the coastlines, where sediments may be expected to be spatially heterogeneous. Overall, the maps reveal extensive areas of very low sediment permeability coupled with low rates of natural seabed disturbance. Moreover, muddy sediments in the inner Firth of Clyde, Inchmarnock Water, and the sea lochs are enriched in organic carbon and nitrogen relative to the sediments of the outer Firth of Clyde. As a demonstration of the value of these maps, the standing stock of organic carbon and nitrogen in the surficial sediments of the Clyde was calculated. The Clyde stores 3.42 and 0.33 million t of organic carbon and nitrogen in the top 10 cm of seabed sediment, respectively, substantially contributing to Scotland's coastal and shelf blue carbon stocks. Data products are available from https://doi.org/10.15129/2003faa2-ee93-4c11-bb16-48485f5f136d (Heath and Pace, 2021).


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Badusha M. ◽  
Santhosh S

The hydro geochemical features of Neyyar River for a period of one year from May 2015 to April 2016 were analyzed. Six sampling sites were fixed considering physiography and present landuse pattern of the river basin. The residents in the drainage basin are primarily responsible for framing a better landuse and thereby maintain a good water and sediment regime. Geospatial pattern of the present landuse of the study area indicated that the sustainability of this river ecosystem is in danger due to unscientific landuse practices, which is reflected in the river quality as well. The parameters such as hydrogen ion concentration, electrical conductivity, chloride, Biological Oxygen Demand, total hardness and sulphate of river water and Organic Carbon of river bed sediments were analyzed in this study. The overall analysis shows that the highland areas are characterized by better quality of water together with low organic carbon, which is mainly due to better landuse and minimal reclamation. The midland and lowland areas are characterized by poor quality of water with high organic carbon, which is due to high anthropogenic activities and maximum pollutants associated with the region together with the alteration in landuse from a traditional eco-friendly pattern to a severely polluted current pattern.


Harmful Algae ◽  
2021 ◽  
Vol 103 ◽  
pp. 102012
Author(s):  
Abdiel E. Laureano-Rosario ◽  
Malcolm McFarland ◽  
David J. Bradshaw ◽  
Jackie Metz ◽  
Rachel A. Brewton ◽  
...  

Harmful Algae ◽  
2017 ◽  
Vol 69 ◽  
pp. 75-82 ◽  
Author(s):  
Jennifer M. Sneed ◽  
Theresa Meickle ◽  
Niclas Engene ◽  
Sherry Reed ◽  
Sarath Gunasekera ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Eve Galimany ◽  
Jessica Lunt ◽  
Christopher J. Freeman ◽  
I. Segura-García ◽  
M. Mossop ◽  
...  

Brown tides formed by Aureoumbra lagunensis decrease light penetration in the water column and are often followed by hypoxic events that result in the loss of fish and shellfish. To understand the ability of bivalve filter feeders to control and prevent A. lagunensis blooms, we exposed eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), and hard clams (Mercenaria mercenaria) to a naturally co-occurring brown tide in the Indian River Lagoon (IRL), Florida, United States. Bivalves were exposed in the laboratory to multiple concentrations (104 to 106 cells mL–1) of isotopically labeled (13C and 15N) A. lagunensis cells. The standard clearance rate (herein clearance rate) of each bivalve species was calculated using flow cytometry to quantify A. lagunensis cell removal. The highest clearance rates were at 104 cells mL–1, but values varied across bivalve species (2.16 ± 0.30, 3.03 ± 0.58, and 0.41 ± 0.12 L h–1 for C. virginica, I. recurvum, and M. mercenaria, respectively). Although clearance rates decreased with increasing bloom concentrations, bivalves were still consuming algal cells at all concentrations and were retaining and assimilating more cells at the highest concentrations, as revealed by δ13C and δ15N values. We highlight interspecific differences among bivalve species in the removal of A. lagunensis, supporting the importance of healthy and diverse filter feeding communities in estuaries, especially as threats of brown tides and other HABs are increasing in the Anthropocene.


Sign in / Sign up

Export Citation Format

Share Document