scholarly journals SNRNP200 Mutations Cause Autosomal Dominant Retinitis Pigmentosa

2021 ◽  
Vol 7 ◽  
Author(s):  
Tao Zhang ◽  
Jingshan Bai ◽  
Xinyi Zhang ◽  
Xiaowei Zheng ◽  
Nan Lu ◽  
...  

The small nuclear ribonucleoprotein 200 kDa (SNRNP200) gene plays a key role in the maturation of pre-message RNA (pre-mRNA) splicing with the indication for the etiology of retinitis pigmentosa (RP). Gene recognition can facilitate the diagnosis of these patients for better clinical management, treatment and counseling. This study aimed to outline the causative mutation in a Chinese family and the pathogenic mechanism of this SNRNP200 mutation in RP. Eighteen individuals from the affected family underwent a complete ophthalmic examination. Whole exome sequencing (WES) was conducted to identify the pathogenic variant in the proband, which was then confirmed by Sanger sequencing. Expression of the SNRNP200 transcript in zebrafish was identified via whole mount in situ hybridization. Morpholino oligonucleotide (MO) and SNRNP200 wild and mutant mRNA were injected into zebrafish embryos followed by analyses of the systemic changes and retinal phenotypes using immunofluorescence. Heterozygous SNRNP200c.C6088T (p.Arg2030Cys) mutation was ascertained in two members of this family: the proband and his father (II-2). Overexpression of SNRNP200Arg2030Cys, but not SNRNP200WT caused systemic deformities in the wild-type zebrafish embryos with the retina primarily injured, and significantly increased death rates in the morphant embryos, in which the orthologous zebrafish SNRNP200 gene was blocked. In conclusion, this study reports a novel heterozygous SNRNP200c.C6088T mutation, which is evidenced to cause RP via a dominant-negative effect.

2003 ◽  
Vol 14 (8) ◽  
pp. 3400-3413 ◽  
Author(s):  
Christopher J.R. Loewen ◽  
Orson L. Moritz ◽  
Beatrice M. Tam ◽  
David S. Papermaster ◽  
Robert S. Molday

Peripherin-2 is a member of the tetraspanin family of membrane proteins that plays a critical role in photoreceptor outer segment disk morphogenesis. Mutations in peripherin-2 are responsible for various retinal degenerative diseases including autosomal dominant retinitis pigmentosa (ADRP). To identify determinants required for peripherin-2 targeting to disk membranes and elucidate mechanisms underlying ADRP, we have generated transgenic Xenopus tadpoles expressing wild-type and ADRP-linked peripherin-2 mutants as green fluorescent fusion proteins in rod photoreceptors. Wild-type peripherin-2 and P216L and C150S mutants, which assemble as tetramers, targeted to disk membranes as visualized by confocal and electron microscopy. In contrast the C214S and L185P mutants, which form homodimers, but not tetramers, were retained in the rod inner segment. Only the P216L disease mutant induced photoreceptor degeneration. These results indicate that tetramerization is required for peripherin-2 targeting and incorporation into disk membranes. Tetramerization-defective mutants cause ADRP through a deficiency in wild-type peripherin-2, whereas tetramerization-competent P216L peripherin-2 causes ADRP through a dominant negative effect, possibly arising from the introduction of a new oligosaccharide chain that destabilizes disks. Our results further indicate that a checkpoint between the photoreceptor inner and outer segments allows only correctly assembled peripherin-2 tetramers to be incorporated into nascent disk membranes.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 363 ◽  
Author(s):  
Sarah Naessens ◽  
Laurien Ruysschaert ◽  
Steve Lefever ◽  
Frauke Coppieters ◽  
Elfride De Baere

The recurrent missense variant in Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3), c.166G>A, p.(Gly56Arg) or G56R, underlies 1%–2% of cases with autosomal dominant retinitis pigmentosa (adRP), a frequent, genetically heterogeneous inherited retinal disease (IRD). The mutant NR2E3 protein has a presumed dominant negative effect (DNE) by competition for dimer formation with Cone-Rod Homeobox (CRX) but with abolishment of DNA binding, acting as a repressor in trans. Both the frequency and DNE of G56R make it an interesting target for allele-specific knock-down of the mutant allele using antisense oligonucleotides (AONs), an emerging therapeutic strategy for IRD. Here, we designed gapmer AONs with or without a locked nucleic acid modification at the site of the mutation, which were analyzed for potential off-target effects. Next, we overexpressed wild type (WT) or mutant NR2E3 in RPE-1 cells, followed by AON treatment. Transcript and protein levels of WT and mutant NR2E3 were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot respectively. All AONs showed a general knock-down of mutant and WT NR2E3 on RNA and protein level, showing the accessibility of the region for AON-induced knockdown. Further modifications are needed however to increase allele-specificity. In conclusion, we propose the first proof-of-concept for AON-mediated silencing of a single nucleotide variation with a dominant negative effect as a therapeutic approach for NR2E3-associated adRP.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1374-1374
Author(s):  
Blair R. Anderson ◽  
Erica E. Davis ◽  
Marilyn J. Telen ◽  
Allison E. Ashley-Koch

Abstract BACKGROUND: Sickle cell disease (SCD) patients have a heterogeneous clinical course, and as patient survival has improved, end-organ damage has become an emergent clinical priority. End stage renal disease (ESRD), occurring in 5-18% of SCD patients, is a particular concern, because it is a major risk factor for early mortality (Platt et al. 1994). Detection of SCD nephropathy (SCDN) relies on relatively late-stage markers, namely proteinuria and reduced glomerular filtration rate (GFR). Consequently, at-risk SCD patients are not identified prior to end-organ damage. In non-SCD nephropathy, ESRD risk among African American individuals has been attributed to coding variants (termed G1 and G2) in apolipoprotein L1 (APOL1). The G1 allele consists of two nonsynonymous variants in perfect LD, rs73885319 and rs60910145 (encoding S384G and I384M), while the G2 variant consists of a six base pair deletion removing amino acids N388 and Y389 (~21% and ~13% allelic frequency in African Americans for G1 and G2, respectively). We demonstrated that these variants in APOL1 are strong predictors of risk for proteinuria in SCD (Ashley-Koch et al. 2011). Here, we use zebrafish as an in vivo model to both examine the role of apol1 in glomerular development and pronephric filtration and also to test the effects of APOL1 G1 and G2 expression in the developing kidney. METHODS: A morpholino (MO) was designed by Gene Tools, LLC (Philomath, OR) to target the translation initiation site of zebrafish apol1. APOL1 G1 and G2 allelic constructs were synthesized from a wild-type (WT) APOL1 human open reading frame clone (GenBank: BC112943) using site-directed mutagenesis (Stratagene, QuikChange II), subsequently transcribed (mMESSAGE mMACHINE®, Life Technologies) into capped mRNA and co-injected with apol1-MO into zebrafish embryos. To assay glomerular filtration, 70 kDa FITC-conjugated dextran was injected into the cardiac venous sinus of 48 hour post-fertilization embryos. The eye vasculature of individual fish was imaged at two, 12, and 36 hours after dextran injection. The average fluorescence intensity was measured across the eye, and changes in intensity relative to the 2-hour post-injection measurements were calculated for comparison. Electron microscopy sections of five days post-fertilization embryos were cut on a Leica-Reichert Ultracut E ultramicrotome, and semi-thin sections (1.0μm) were stained and examined on a Phillips CM12 electron microscope. RESULTS: As we showed previously (Anderson et al., ASH 2013), MO-induced suppression of apol1 in zebrafish embryos results in pericardial edema, glomerular filtration defects, and extensive podocyte loss. Importantly, complementation of apol1 morphants with WT human APOL1 mRNA rescues the observed kidney defects. However, we now show that neither APOL1 G1 nor G2 risk alleles ameliorate defects caused by apol1 suppression. Notably, injection of APOL1 G2 alone results in renal defects, as indicated by increased dextran clearance and the presence of microvillus protrusions in the urinary space. Injection of APOL1 G1 alone, however, does not induce noticeable kidney dysfunction. Furthermore, when APOL1 G2 injected embryos were titrated with increasing concentrations of human APOL1 WT mRNA, we observed a significant reduction of edema formation in developing embryos, suggesting a possible dominant-negative effect of the altered protein. CONCLUSIONS: Unlike the WT APOL1 mRNA, neither the APOL1 G1 or G2 risk alleles could rescue kidney dysfunction due to knockdown of apol1 in zebrafish embryos, suggesting that these SCDN risk alleles impact the normal function of APOL1 in the kidney. Furthermore, development of edema with concomitant defects in glomerular ultrastructure in zebrafish embryos injected with APOL1 G2 mRNA alone suggest that this allele may act in a dominant-negative manner to induce kidney defects. Interestingly, it has been shown that APOL1 may cause toxic renal effects through programmed cell death pathways leading to glomerulosclerosis (Wan et al. 2008). Thus, apol1 suppression could result in the dysregulation of autophagic pathways, causing podocyte malformation and thereby affecting the susceptibility of the pronephros to glomerular injury. In summary, these data provide essential insight into the biological mechanisms by which APOL1 variants confer disease risk in human SCDN and other nondiabetic nephropathies. Disclosures No relevant conflicts of interest to declare.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1455-1462
Author(s):  
José L Barra ◽  
Mario R Mautino ◽  
Alberto L Rosa

eth-1r a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48 → N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1  +/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1  +/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1  + and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1  +/eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1  +/eth-1r AdoMet synthetase molecules.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 633-645 ◽  
Author(s):  
Guido Cuperus ◽  
David Shore

Abstract We previously described two classes of SIR2 mutations specifically defective in either telomeric/HM silencing (class I) or rDNA silencing (class II) in S. cerevisiae. Here we report the identification of genes whose protein products, when either overexpressed or directly tethered to the locus in question, can establish silencing in SIR2 class I mutants. Elevated dosage of SCS2, previously implicated as a regulator of both inositol biosynthesis and telomeric silencing, suppressed the dominant-negative effect of a SIR2-143 mutation. In a genetic screen for proteins that restore silencing when tethered to a telomere, we isolated ESC2 and an uncharacterized gene, (YOL017w), which we call ESC8. Both Esc2p and Esc8p interact with Sir2p in two-hybrid assays, and the Esc8p-Sir2 interaction is detected in vitro. Interestingly, Esc8p has a single close homolog in yeast, the ISW1-complex factor Ioc3p, and has also been copurified with Isw1p, raising the possibility that Esc8p is a component of an Isw1p-containing nucleosome remodeling complex. Whereas esc2 and esc8 deletion mutants alone have only marginal silencing defects, cells lacking Isw1p show a strong silencing defect at HMR but not at telomeres. Finally, we show that Esc8p interacts with the Gal11 protein, a component of the RNA pol II mediator complex.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 830
Author(s):  
Prasangi Rajapaksha ◽  
Isoiza Ojo ◽  
Ling Yang ◽  
Ankit Pandeya ◽  
Thilini Abeywansha ◽  
...  

The RND family efflux pump AcrAB-TolC in E. coli and its homologs in other Gram-negative bacteria are major players in conferring multidrug resistance to the cells. While the structure of the pump complex has been elucidated with ever-increasing resolution through crystallography and Cryo-EM efforts, the dynamic assembly process remains poorly understood. Here, we tested the effect of overexpressing functionally defective pump components in wild type E. coli cells to probe the pump assembly process. Incorporation of a defective component is expected to reduce the efflux efficiency of the complex, leading to the so called “dominant negative” effect. Being one of the most intensively studied bacterial multidrug efflux pumps, many AcrA and AcrB mutations have been reported that disrupt efflux through different mechanisms. We examined five groups of AcrB and AcrA mutants, defective in different aspects of assembly and substrate efflux. We found that none of them demonstrated the expected dominant negative effect, even when expressed at concentrations many folds higher than their genomic counterpart. The assembly of the AcrAB-TolC complex appears to have a proof-read mechanism that effectively eliminated the formation of futile pump complex.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 875
Author(s):  
Karlijn Pellikaan ◽  
Geeske M. van Woerden ◽  
Lotte Kleinendorst ◽  
Anna G. W. Rosenberg ◽  
Bernhard Horsthemke ◽  
...  

Prader–Willi syndrome (PWS) is a rare genetic condition characterized by hypotonia, intellectual disability, and hypothalamic dysfunction, causing pituitary hormone deficiencies and hyperphagia, ultimately leading to obesity. PWS is most often caused by the loss of expression of a cluster of genes on chromosome 15q11.2-13. Patients with Prader–Willi-like syndrome (PWLS) display features of the PWS phenotype without a classical PWS genetic defect. We describe a 46-year-old patient with PWLS, including hypotonia, intellectual disability, hyperphagia, and pituitary hormone deficiencies. Routine genetic tests for PWS were normal, but a homozygous missense variant NM_003097.3(SNRPN):c.193C>T, p.(Arg65Trp) was identified. Single nucleotide polymorphism array showed several large regions of homozygosity, caused by high-grade consanguinity between the parents. Our functional analysis, the ‘Pipeline for Rapid in silico, in vivo, in vitro Screening of Mutations’ (PRiSM) screen, showed that overexpression of SNRPN-p.Arg65Trp had a dominant negative effect, strongly suggesting pathogenicity. However, it could not be confirmed that the variant was responsible for the phenotype of the patient. In conclusion, we present a unique homozygous missense variant in SNURF-SNRPN in a patient with PWLS. We describe the diagnostic trajectory of this patient and the possible contributors to her phenotype in light of the current literature on the genotype–phenotype relationship in PWS.


Sign in / Sign up

Export Citation Format

Share Document