scholarly journals The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids

2016 ◽  
Vol 6 ◽  
Author(s):  
Wing Sze Ho ◽  
Kien-Pong Yap ◽  
Chew Chieng Yeo ◽  
Ganeswrie Rajasekaram ◽  
Kwai Lin Thong
2006 ◽  
Vol 188 (16) ◽  
pp. 5975-5983 ◽  
Author(s):  
Timothy J. Johnson ◽  
Sara J. Johnson ◽  
Lisa K. Nolan

ABSTRACT Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli causing colibacillosis in birds, is responsible for significant economic losses for the poultry industry. Recently, we reported that the APEC pathotype was characterized by possession of a set of genes contained within a 94-kb cluster linked to a ColV plasmid, pAPEC-O2-ColV. These included sitABCD, genes of the aerobactin operon, hlyF, iss, genes of the salmochelin operon, and the 5′ end of cvaB of the ColV operon. However, the results of gene prevalence studies performed among APEC isolates revealed that these traits were not always linked to ColV plasmids. Here, we present the complete sequence of a 174-kb plasmid, pAPEC-O1-ColBM, which contains a putative virulence cluster similar to that of pAPEC-O2-ColV. These two F-type plasmids share remarkable similarity, except that they encode the production of different colicins; pAPEC-O2-ColV contains an intact ColV operon, and pAPEC-O1-ColBM encodes the colicins B and M. Interestingly, remnants of the ColV operon exist in pAPEC-O1-ColBM, hinting that ColBM-type plasmids may have evolved from ColV plasmids. Among APEC isolates, the prevalence of ColBM sequences helps account for the previously observed differences in prevalence between genes of the “conserved” portion of the putative virulence cluster of pAPEC-O2-ColV and those genes within its “variable” portion. These results, in conjunction with Southern blotting and probing of representative ColBM-positive strains, indicate that this “conserved” cluster of putative virulence genes is primarily linked to F-type virulence plasmids among the APEC isolates studied.


2016 ◽  
Vol 60 (7) ◽  
pp. 4336-4338 ◽  
Author(s):  
Qiu E. Yang ◽  
Timothy Rutland Walsh ◽  
Bao Tao Liu ◽  
Meng Ting Zou ◽  
Hui Deng ◽  
...  

ABSTRACTWe sequenced a novel conjugative multidrug resistance IncF plasmid, p42-2, isolated fromEscherichia colistrain 42-2, previously identified in China. p42-2 is 106,886 bp long, composed of a typical IncFII-type backbone (∼54 kb) and one distinct acquired DNA region spanning ∼53 kb, harboring 12 antibiotic resistance genes [blaCTX-M-55,oqxA,oqxB,fosA3,floR,tetA(A),tetA(R),strA,strB,sul2,aph(3′)-II, and ΔblaTEM-1]. The spread of these multidrug resistance determinants on the same plasmid is of great concern and, because of coresistance to antibiotics from different classes, is therapeutically challenging.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Renato P. Maluta ◽  
Bryon Nicholson ◽  
Catherine M. Logue ◽  
Lisa K. Nolan ◽  
Thaís C. G. Rojas ◽  
...  

Avian pathogenic Escherichia coli (APEC) is associated with colibacillosis in poultry. Here, we present the first complete sequence of an APEC strain of the O7:HNT serotype and ST73 sequence type, isolated from a broiler with cellulitis. Complete genomes of APEC with distinct genetic backgrounds may be useful for comparative analysis.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 450-460 ◽  
Author(s):  
Kelly A. Tivendale ◽  
Amir H. Noormohammadi ◽  
Joanne L. Allen ◽  
Glenn F. Browning

Colibacillosis is a common systemic disease of worldwide economic importance in poultry, caused by Escherichia coli. E. coli are normally found in the intestines of poultry, but some strains are able to cause extraintestinal disease. Plasmid pVM01 is essential for virulence in avian pathogenic Escherichia coli (APEC) strain E3 in chickens after aerosol exposure and contains the virulence-associated genes iucA, iss and tsh in distinct regions. The determination of the complete sequence of this plasmid identified many ORFs that were highly similar to genes found in the APEC O1 plasmid, as well as many hypothetical ORFs. Truncated versions of pVM01 were constructed and introduced into avirulent APEC strain E3/2.4 and the pathogenicity of these strains was assessed by aerosol exposure. The function of the region of pVM01 that contains the genes for conjugation was confirmed. Strains carrying the truncated plasmids appeared to be of intermediate virulence compared to the wild-type APEC strain E3. The conserved portion of the putative virulence region was found to contribute to the colonization of and generation of lesions in the air sacs. Both the conserved and variable portions of the putative virulence region were shown to contribute to the colonization of the trachea, but the variable portion of the putative virulence region was not required for the strain to confer a virulent phenotype. These results reveal that deletion of the conserved portion of the putative virulence region, but not the variable portion of the putative virulence region, is associated with a decrease in virulence of APEC.


2020 ◽  
Vol 104 (15) ◽  
pp. 6707-6717
Author(s):  
João Pedro Rueda Furlan ◽  
Ralf Lopes ◽  
Irys Hany Lima Gonzalez ◽  
Patrícia Locosque Ramos ◽  
Eliana Guedes Stehling

Sign in / Sign up

Export Citation Format

Share Document