Comparative analysis of multidrug resistance plasmids and genetic background of CTX-M-producing Escherichia coli recovered from captive wild animals

2020 ◽  
Vol 104 (15) ◽  
pp. 6707-6717
Author(s):  
João Pedro Rueda Furlan ◽  
Ralf Lopes ◽  
Irys Hany Lima Gonzalez ◽  
Patrícia Locosque Ramos ◽  
Eliana Guedes Stehling
2020 ◽  
Vol 11 ◽  
Author(s):  
Mingyu Wang ◽  
Wenjia Wang ◽  
Yu Niu ◽  
Ting Liu ◽  
Ling Li ◽  
...  

An extensively-drug resistant (XDR) Escherichia coli W60 was isolated from the urine sample of a patient. The genetic basis for its XDR phenotype was investigated, particularly the basis for its resistance toward β-lactam/BLI (β-Lactamase Inhibitor) combinations. Following determination of the XDR phenotype, third generation genomic sequencing was performed to identify genetic structures in E. coli W60. Further cloning analysis was performed to identify determinants of β-lactam/BLI combination resistance. It was found that E. coli W60 is resistant to nearly all of the tested antibiotics including all commonly used β-lactam/BLI combinations. Analysis of the genomic structures in E. coli W60 showed two novel transferable plasmids are responsible for the resistance phenotypes. Further genetic analysis showed blaNDM–5 leads to high resistance to β-lactam/BLI combinations, which was enhanced by co-expressing bleMBL. pECW602 harbors a truncated blaTEM that is not functional due to the loss of the N-terminal signal peptide coding region. Research performed in this work leads to several significant conclusions: the XDR phenotype of E. coli W60 can be attributed to the presence of transferable multidrug resistance plasmids; NDM-5 confers high resistance to β-lactam/BLI combinations; co-expression of bleMBL enhances resistance caused by NDM-5; the signal peptides of TEM type β-lactamases are essential for their secretion and function. Findings of this work show the danger of transferable multidrug resistance plasmids and metallo-β-lactamases, both of which should be given more attention in the analysis and treatment of multidrug resistant pathogens.


2020 ◽  
Vol 9 (20) ◽  
Author(s):  
Shiori Yamamoto ◽  
Wataru Kitagawa ◽  
Motoki Nakano ◽  
Hiroshi Asakura ◽  
Eriko Iwabuchi ◽  
...  

Escherichia coli is a common reservoir for antimicrobial resistance genes that can be easily transformed to possess multidrug resistance through plasmid transfer. To understand multidrug resistance plasmids, we report the plasmid sequences of four large plasmids carrying a number of genes related to antimicrobial resistance that were found in E. coli strains isolated from beef cattle.


Author(s):  
Elizabeth A. Cummins ◽  
Ann E. Snaith ◽  
Alan McNally ◽  
Rebecca J. Hall

AbstractThe Escherichia coli species exhibits a vast array of variable lifestyles, including environmental, commensal, and pathogenic organisms. Many of these E. coli contribute significantly to the global threat of antimicrobial resistance (AMR). Multidrug-resistant (MDR) clones of E. coli have arisen multiple times over varying timescales. The repeated emergence of successful pandemic clones, including the notorious ST131 lineage, highlights a desperate need to further study the evolutionary processes underlying their emergence and success. Here, we review the evolutionary emergence of E. coli ST131 pandemic clones and draw parallels between their evolutionary trajectories and those of other lineages. From colonization and expansion to the acquisition of multidrug resistance plasmids, potentiating mutations are present at each stage, leading to a proposed sequence of events that may result in the formation of an antimicrobial-resistant pandemic clone.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1005
Author(s):  
Laura Montoro-Dasi ◽  
Arantxa Villagra ◽  
Sandra Sevilla-Navarro ◽  
Maria Teresa Pérez-Gracia ◽  
Santiago Vega ◽  
...  

New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.


Sign in / Sign up

Export Citation Format

Share Document