scholarly journals Encapsulation of Cardamom Essential Oil in Chitosan Nano-composites: In-vitro Efficacy on Antibiotic-Resistant Bacterial Pathogens and Cytotoxicity Studies

2016 ◽  
Vol 7 ◽  
Author(s):  
Bushra Jamil ◽  
Rashda Abbasi ◽  
Shahid Abbasi ◽  
Muhammad Imran ◽  
Siffat U. Khan ◽  
...  
Author(s):  
Erin Cieslak ◽  
James P. Mack ◽  
Albert Rojtman

<p><strong>Objective: </strong>Essential oils are of significant interest in today’s world of healthcare because these compounds have a variety of medicinal properties. In this study, we evaluated the <em>in vitro</em> antibiotic role of essential oils as a possible alternative treatment in combatting Methicillin-resistant <em>Staphylococcus aureus</em> (MRSA).</p><p><strong>Methods: </strong>In conjunction with carrier oils, three essential oils (cassia, cinnamon bark, and thyme), as well as methylglyoxal were tested on MRSA using the Kirby-Bauer disc diffusion method.</p><p><strong>Results: </strong>The minimum inhibitory concentration of each tested essential oil and methylglyoxal in carrier oil was determined to be 25% essential oil and 75% carrier oil mixture. This concentration worked much more effectively than the standard antibiotic, vancomycin, which is currently used to treat MRSA infections.</p><p><strong>Conclusion: </strong>Antibacterial emollients made from naturally occurring products like essential oils can be cost-effective alternatives to antibiotics. The results of this research show that these emollients are more effective against MRSA than standard antibiotics in cell culture.</p>


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 169 ◽  
Author(s):  
Sunil Kumar ◽  
Pooja ◽  
Francesco Trotta ◽  
Rekha Rao

Babchi (Psoralea corylifolia) oil is an important essential oil used in several traditional medicines to cure various disorders. This phytotherapeutic agent possesses a number of pharmacological activities including antibacterial, antifungal, antioxidant, anti-inflammatory, immunomodulatory, and antitumor factors. However, volatile nature, poor stability, and solubility of babchi oil (BO) restrict its pharmaceutical applications. Therefore, the aim of the present work was to encapsulate this oil in β-cyclodextrin nanosponges (NS) in order to overcome the above limitations. To fabricate nanosponges, β-cyclodextrin was cross-linked with diphenyl carbonate in different molar ratios viz. 1:2, 1:4, 1:6, 1:8, and 1:10. The blank nanosponges were loaded with BO using the freeze-drying method. The particle size of the BO loaded nanosponges was found to lie between 200 and 500 nm with low polydispersity index. Furthermore, the zeta potential, the Fourier transform infrared spectroscopy, X-ray diffraction, thermal analysis, and electron microscopy were carried out for characterization of BO nanosponges. Results obtained from spectral analysis ascertained the formation of inclusion complexes. Additionally, solubilisation efficiency of BO was checked in distilled water and found enhanced by 4.95 times with optimized β-cyclodextrin nanosponges. The cytotoxicity study was carried out by the MTT assay using HaCaT cell lines. A significant improvement in photo-stability of essential oil was also observed by inclusion innanosponges. Lastly, the optimized formulation was tested for antibacterial activity using Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Therefore, encapsulation of BO in nanosponges resulted in efficacious carrier system in terms of solubility, photo-stability, and safety of this oil along with handling benefits.


Author(s):  
Sunil Kumar ◽  
Pooja Sihag ◽  
Francesco Trotta ◽  
Rekha Rao

Babchi (Psoralea corylifolia) oil is an important essential oil used in several traditional medicines to cure various disorders. This phytotherapeutic agent possesses number of pharmacological activities including antibacterial, antifungal, antioxidant, anti-inflammatory, immunomodulatory and antitumor. However, volatile nature, poor stability and solubility of babchi oil (BO) restrict its pharmaceutical applications. Hence, the aim of the present work was to encapsulate this oil in &beta;-cyclodextrin nanosponges (NS) in order to overcome above limitations. To fabricate nanosponges, &beta;-cyclodextrin was crosslinked with diphenyl carbonate in different molar ratios viz.1:2, 1:4, 1:6, 1:8 and 1:10. The blank nanosponges were loaded with babchi oil using freeze-drying method. Particle size of the babchi oil loaded nanosponges was found to lie between 200-500 nm, with low polydispersity index. Further, zeta potential, Fourier transform infrared spectroscopy, X-ray diffraction, thermal analysis and electron microscopy were carried out for characterization of babchi oil nanosponges. Results obtained from spectral analysis ascertained the formation of inclusion complexes. Additionally, solubilisation efficiency of the babchi oil was checked in distilled water and found enhanced by 4.95 times with optimized &beta;-cyclodextrin nanosponges. The cytotoxicity study was carried out by MTT assay using HaCaT cell lines. A significant improvement in photostability of essential oil was also observed by inclusion in&nbsp;&nbsp; nanosponges. Lastly, the optimized formulation was tested for antibacterial activity using Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Hence, encapsulation of BO in nanosponges resulted in efficacious carrier system in terms of solubility, photostability as well as safety of this oil along with handling benefits.


2019 ◽  
Vol 74 (9) ◽  
pp. 2631-2639 ◽  
Author(s):  
Brian M Luna ◽  
Ksenia Ershova ◽  
Jun Yan ◽  
Amber Ulhaq ◽  
Travis B Nielsen ◽  
...  

AbstractBackgroundNew strategies are needed to slow the emergence of antibiotic resistance among bacterial pathogens. In particular, society is experiencing a crisis of antibiotic-resistant infections caused by Gram-negative bacterial pathogens and novel therapeutics are desperately needed to combat such diseases. Acquisition of iron from the host is a nearly universal requirement for microbial pathogens—including Gram-negative bacteria—to cause infection. We have previously reported that apo-transferrin (lacking iron) can inhibit the growth of Staphylococcus aureus in culture and diminish emergence of resistance to rifampicin.ObjectivesTo define the potential of apo-transferrin to inhibit in vitro growth of Klebsiella pneumoniae and Acinetobacter baumannii, key Gram-negative pathogens, and to reduce emergence of resistance to antibiotics.MethodsThe efficacy of apo-transferrin alone or in combination with meropenem or ciprofloxacin against K. pneumoniae and A. baumannii clinical isolates was tested by MIC assay, time–kill assay and assays for the selection of resistant mutants.ResultsWe confirmed that apo-transferrin had detectable MICs for all strains tested of both pathogens. Apo-transferrin mediated an additive antimicrobial effect for both antibiotics against multiple strains in time–kill assays. Finally, adding apo-transferrin to ciprofloxacin or meropenem reduced the emergence of resistant mutants during 20 day serial passaging of both species.ConclusionsThese results suggest that apo-transferrin may have promise to suppress the emergence of antibiotic-resistant mutants when treating infections caused by Gram-negative bacteria.


Author(s):  
T. Vishwanatha ◽  
M. Keshavamurthy ◽  
K. G. Siddalingeshwara ◽  
D. Kavyashree

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
B Demirci ◽  
T Kiyan ◽  
A Koparal ◽  
M Kaya ◽  
F Demirci ◽  
...  
Keyword(s):  

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
O Ustun ◽  
F Senol ◽  
M Kürkçüoğlu ◽  
I Orhan ◽  
M Kartal ◽  
...  

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
A Oliveira ◽  
V Rehder ◽  
A Ruiz ◽  
G Longato ◽  
J Carvalho ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document