scholarly journals Erratum: A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in Aspergillus nidulans

2018 ◽  
Vol 9 ◽  
Author(s):  
2019 ◽  
Vol 14 (7) ◽  
pp. 1643-1651 ◽  
Author(s):  
Michelle F. Grau ◽  
Ruth Entwistle ◽  
C. Elizabeth Oakley ◽  
Clay C. C. Wang ◽  
Berl R. Oakley

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3657 ◽  
Author(s):  
Zhuang Ding ◽  
Haibo Zhou ◽  
Xiao Wang ◽  
Huiming Huang ◽  
Haotian Wang ◽  
...  

Epigenetic regulation plays a critical role in controlling fungal secondary metabolism. Here, we report the pleiotropic effects of the epigenetic regulator HdaA (histone deacetylase) on secondary metabolite production and the associated biosynthetic gene clusters (BGCs) expression in the plant endophytic fungus Penicillium chrysogenum Fes1701. Deletion of the hdaA gene in strain Fes1701 induced a significant change of the secondary metabolite profile with the emergence of the bioactive indole alkaloid meleagrin. Simultaneously, more meleagrin/roquefortine-related compounds and less chrysogine were synthesized in the ΔhdaA strain. Transcriptional analysis of relevant gene clusters in ΔhdaA and wild strains indicated that disruption of hdaA had different effects on the expression levels of two BGCs: the meleagrin/roquefortine BGC was upregulated, while the chrysogine BGC was downregulated. Interestingly, transcriptional analysis demonstrated that different functional genes in the same BGC had different responses to the disruption of hdaA. Thereinto, the roqO gene, which encodes a key catalyzing enzyme in meleagrin biosynthesis, showed the highest upregulation in the ΔhdaA strain (84.8-fold). To our knowledge, this is the first report of the upregulation of HdaA inactivation on meleagrin/roquefortine alkaloid production in the endophytic fungus P. chrysogenum. Our results suggest that genetic manipulation based on the epigenetic regulator HdaA is an important strategy for regulating the productions of secondary metabolites and expanding bioactive natural product resources in endophytic fungi.


2017 ◽  
Vol 63 (4) ◽  
pp. 228-235 ◽  
Author(s):  
Eriko Itoh ◽  
Ryosuke Shigemoto ◽  
Ken-Ichi Oinuma ◽  
Motoyuki Shimizu ◽  
Shunsuke Masuo ◽  
...  

2009 ◽  
Vol 46 (10) ◽  
pp. 782-790 ◽  
Author(s):  
Inhyung Lee ◽  
Jee-Hwan Oh ◽  
E. Keats Shwab ◽  
Taylor R.T. Dagenais ◽  
David Andes ◽  
...  

Author(s):  
Éva Leiter ◽  
Tamás Emri ◽  
Klaudia Pákozdi ◽  
László Hornok ◽  
István Pócsi

Abstract Regulation of signal transduction pathways is crucial for the maintenance of cellular homeostasis and organismal development in fungi. Transcription factors are key elements of this regulatory network. The basic-region leucine zipper (bZIP) domain of the bZIP-type transcription factors is responsible for DNA binding while their leucine zipper structural motifs are suitable for dimerization with each other facilitiating the formation of homodimeric or heterodimeric bZIP proteins. This review highlights recent knowledge on the function of fungal orthologs of the Schizosaccharomyces pombe Atf1, Aspergillus nidulans AtfA, and Fusarium verticillioides FvAtfA, bZIP-type transcription factors with a special focus on pathogenic species. We demonstrate that fungal Atf1-AtfA-FvAtfA orthologs play an important role in vegetative growth, sexual and asexual development, stress response, secondary metabolite production, and virulence both in human pathogens, including Aspergillus fumigatus, Mucor circinelloides, Penicillium marneffei, and Cryptococcus neoformans and plant pathogens, like Fusarium ssp., Magnaporthe oryzae, Claviceps purpurea, Botrytis cinerea, and Verticillium dahliae. Key points • Atf1 orthologs play crucial role in the growth and development of fungi. • Atf1 orthologs orchestrate environmental stress response of fungi. • Secondary metabolite production and virulence are coordinated by Atf1 orthologs.


2021 ◽  
Vol 22 (11) ◽  
pp. 5671
Author(s):  
Mohsen Hesami ◽  
Austin Baiton ◽  
Milad Alizadeh ◽  
Marco Pepe ◽  
Davoud Torkamaneh ◽  
...  

For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.


Sign in / Sign up

Export Citation Format

Share Document