scholarly journals Rugose Morphotype in Salmonella Typhimurium and Salmonella Heidelberg Induced by Sequential Exposure to Subinhibitory Sodium Hypochlorite Aids in Biofilm Tolerance to Lethal Sodium Hypochlorite on Polystyrene and Stainless Steel Surfaces

2019 ◽  
Vol 10 ◽  
Author(s):  
Mohit Bansal ◽  
Ramakrishna Nannapaneni ◽  
Divya Kode ◽  
Sam Chang ◽  
Chander S. Sharma ◽  
...  
1987 ◽  
Vol 50 (4) ◽  
pp. 327-329 ◽  
Author(s):  
M. O. CARSON ◽  
H. S. LILLARD ◽  
M. K. HAMDY

Salmonellae adhere firmly to poultry skin during processing. Loosely attached bacteria cross-contaminate work surfaces. This study was undertaken to determine if firmly attached bacteria present a health hazard through transfer to work surfaces. Attached 32P-labeled S. typhimurium cells were serially rinsed with 2 to 4 L of Salmonella-free potable tap water or with sterile 0.85% NaCl. Rinsing removed 61 to 89% of attached labeled cells. However, after rinsing, 11 to 39% of cells remained attached, and of these, 3 to 10% were able to detach and transfer from skin to stainless steel surfaces. It was concluded that large rinse volumes may not remove all attached salmonellae from poultry skin surfaces and the potential for cross-contamination does exist.


2013 ◽  
Vol 76 (2) ◽  
pp. 205-212 ◽  
Author(s):  
KAMLESH A. SONI ◽  
ADEMOLA OLADUNJOYE ◽  
RAMAKRISHNA NANNAPANENI ◽  
M. WES SCHILLING ◽  
JUAN L. SILVA ◽  
...  

Persistence of Salmonella biofilms within food processing environments is an important source of Salmonella contamination in the food chain. In this study, essential oils of thyme and oregano and their antimicrobial phenolic constituent carvacrol were evaluated for their ability to inhibit biofilm formation and inactivate preformed Salmonella biofilms. A crystal violet staining assay and CFU measurements were utilized to quantify biofilm cell mass, with evaluating factors such as strain variation, essential oil type, their concentrations, exposure time, as well as biofilm formation surface. Of the three Salmonella strains, Salmonella Typhimurium ATCC 23564 and Salmonella Typhimurium ATCC 19585 produced stronger biofilms than Salmonella Typhimurium ATCC 14028. Biofilm formation by different Salmonella strains was 1.5- to 2-fold higher at 22°C than at 30 or 37°C. The presence of nonbiocidal concentrations of thyme oil, oregano oil, and phenolic carvacrol at 0.006 to 0.012% suppressed Salmonella spp. biofilm formation 2- to 4-fold, but could not completely eliminate biofilm formation. There was high correlation in terms of biofilm inactivation, as determined by the crystal violet–stained optical density (at a 562-nm wavelength) readings and the viable CFU counts. Reduction of biofilm cell mass was dependent on antimicrobial concentration. A minimum concentration of 0.05 to 0.1% of these antimicrobial agents was needed to reduce a 7-log CFU biofilm mass to a nondetectable level on both polystyrene and stainless steel surfaces within 1 h of exposure time.


2002 ◽  
Vol 65 (7) ◽  
pp. 1129-1133 ◽  
Author(s):  
JANNE M. LUNDÉN ◽  
TIINA J. AUTIO ◽  
HANNU J. KORKEALA

The possibility of the transfer of persistent Listeria monocytogenes contamination from one plant to another with a dicing machine was evaluated, and possible reasons for persistent contamination were analyzed. A dicing machine that diced cooked meat products was transferred from plant A to plant B and then to plant C. After the transfer of the dicing machine, L. monocytogenes PFGE type I, originally found in plant A, was soon also found in plants B and C. This L. monocytogenes PFGE type I caused persistent contamination of the dicing lines in plants B and C. The persistent L. monocytogenes strain and three nonpersistent L. monocytogenes strains found in the dicing line of plant C were tested for adherence to stainless steel surfaces and minimal inhibitory concentrations of a quaternary ammonium compound and sodium hypochlorite, disinfectants widely used in the dicing lines. The persistent strain showed significantly higher adherence to stainless steel surfaces than did the nonpersistent strains. The minimal inhibitory concentrations of sodium hypochlorite were similar for all strains, and the minimal inhibitory concentrations of the quaternary ammonium compound for three of the L. monocytogenes PFGE types, including the persistent PFGE type, were high. All persistent L. monocytogenes PFGE type I isolates were found in an area with high hygienic standards, with the dicing machine being the first point of contamination. These observations show that the dicing machine sustained the contamination and suggest that the dicing machine transferred the persistent L. monocytogenes PFGE type from one plant to another.


2012 ◽  
Vol 48 (4) ◽  
pp. 737-745
Author(s):  
Heloísa Maria Ângelo Jerônimo ◽  
Rita de Cássia Ramos do Egypto Queiroga ◽  
Ana Caroliny Vieira da Costa ◽  
Isabella de Medeiros Barbosa ◽  
Maria Lúcia da Conceição ◽  
...  

This study assessed the effect of different growth media [BHI broth, BHI broth plus glucose (10 g/100 mL) and BHI broth plus NaCl (5 g/100 mL)] and incubation temperatures (28 or 37 ºC) on the adherence, detachment and biofilm formation on polypropylene and stainless steel surfaces (2 x 2 cm coupons) for a prolonged period (24-72 h) by some strains of Staphylococcus aureus (S3, S28 and S54) from food processing plants. The efficacy of the sanitizers sodium hypochlorite (250 mg/mL) and peracetic acid (30 mg/mL) in reducing the number of viable bacterial cells in a preformed biofilm was also evaluated. S. aureus strains adhered in highest numbers in BHI broth, regardless of the type of surface or incubation temperature. Cell detachment from surfaces revealed high persistence over the incubation period. The number of cells needed for biofilm formation was noted in all experimental systems after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered onto polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacities to adhere and form biofilms on polypropylene and stainless steel surfaces under the different growth conditions, and the cells in biofilm matrixes were resistant to total removal when exposed to the sanitizers sodium hypochlorite and peracetic acid.


Biofouling ◽  
2003 ◽  
Vol 19 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Nadia Oulahal- Lagsir ◽  
Adele Martial- Gros ◽  
Marc Bonneauc ◽  
Loic Bluma

Biofouling ◽  
2003 ◽  
Vol 19 (3) ◽  
pp. 159-168 ◽  
Author(s):  
NADIA OULAHAL-LAGSIR ◽  
ADELE MARTIAL-GROS ◽  
MARC BONNEAU ◽  
LOIC BLUM

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
I Gomes ◽  
J Malheiro ◽  
A Abreu ◽  
A Borges ◽  
F Mergulhão ◽  
...  

2007 ◽  
Vol 52 (7) ◽  
pp. 2542-2551 ◽  
Author(s):  
Péter Dombovári ◽  
Péter Kádár ◽  
Tibor Kovács ◽  
János Somlai ◽  
Krisztián Radó ◽  
...  

1980 ◽  
Vol 127 (1) ◽  
pp. 27-30 ◽  
Author(s):  
D. W. Shoesmith ◽  
T. E. Rummery ◽  
M. G. Bailey ◽  
D. G. Owen

2006 ◽  
Vol 69 (6) ◽  
pp. 1292-1296 ◽  
Author(s):  
JAMES P. FOLSOM ◽  
JOSEPH F. FRANK

Strains of Listeria monocytogenes vary in their ability to produce biofilms. This research determined if cell density, planktonic chlorine resistance, or subtype are associated with the resistance of L. monocytogenes biofilms to chlorine. Thirteen strains of L. monocytogenes were selected for this research based on biofilm accumulation on stainless steel and rep-PCR subtyping. These strains were challenged with chlorine to determine the resistance of individual strains of L. monocytogenes. Planktonic cells were exposed to 20 to 80 ppm sodium hypochlorite in 20 ppm increments for 5 min in triplicate per replication, and the experiment was replicated three times. The number of tubes with surviving L. monocytogenes was recorded for each isolate at each level of chlorine. Biofilms of each strain were grown on stainless steel coupons. The biofilms were exposed 60 ppm of sodium hypochlorite. When in planktonic culture, four strains were able to survive exposure to 40 ppm of chlorine, whereas four strains were able to survive 80 ppm of chlorine in at least one of three tubes. The remaining five strains survived exposure to 60 ppm of chlorine. Biofilms of 11 strains survived exposure to 60 ppm of chlorine. No association of biofilm chlorine resistance and planktonic chlorine resistance was observed; however, biofilm chorine resistance was similar for strains of the same subtype. Biofilm cell density was not associated with chlorine resistance. In addition, biofilms that survived chlorine treatment exhibited different biofilm morphologies. These data suggest that chlorine resistance mechanisms of planktonic cells and biofilms differ, with planktonic chlorine resistance being more affected by inducible traits, and biofilm chlorine resistance being more affected by traits not determined in this study.


Sign in / Sign up

Export Citation Format

Share Document