scholarly journals Analysis of the Cell Type-Dependence on the Arenavirus Z-Mediated Virus-Like Particle Production

2020 ◽  
Vol 11 ◽  
Author(s):  
Patrick I. Mpingabo ◽  
Shuzo Urata ◽  
Jiro Yasuda
2020 ◽  
Author(s):  
Natalia S. Barbosa ◽  
Luis L. P. daSilva ◽  
Colin M. Crump ◽  
Stephen C. Graham

AbstractOropouche virus (OROV; Genus: Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. To facilitate studies of OROV budding and assembly, we developed a system for producing OROV virus-like particles (VLPs). Using this system we show that the OROV surface glycoproteins Gn and Gc self-assemble to form VLPs independently of the non-structural protein NSm. Mature OROV Gn has two trans-membrane domains that are crucial for glycoprotein translocation to the Golgi complex and VLP production. Inhibition of Golgi function using the drugs brefeldin A and monensin inhibit VLP secretion, with monensin treatment leading to an increase in co-localisation of OROV glycoproteins with the cis-Golgi marker protein GM130. Infection studies have previously shown that the cellular Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. We demonstrate that a dominant negative form of the ESCRT-associated ATPase VPS4 significantly reduces Gn secretion in our VLP assay. Proteasome inhibition using the drug MG132 also disrupts VLPs secretion, suggesting that ubiquitylation promotes ESCRT-mediated VLP release. Additionally, we observe co-localisation between OROV glycoproteins and a specific subset of fluorescently-tagged ESCRT-III components, providing the first insights into which ESCRT-III components are required for OROV assembly. Our in vitro assay for OROV VLP production has allowed us to define molecular interactions that promote OROV release and will facilitate future studies of orthobunyavirus assembly.ImportanceOropouche virus is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. The tripartite genome of this zoonotic virus is capable of reassortment and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We have developed an in vitro virus-like particle production assay for Oropouche virus, allowing us to study the assembly and release of this dangerous pathogen without high-containment biosecurity. We determined the polyprotein sites that are cleaved to yield the mature Oropouche virus surface glycoproteins and characterised the cellular machinery required for glycoprotein secretion. Our study provides important insights into the molecular biology of Oropouche virus infection, in addition to presenting a robust virus-like particle production assay that should facilitate future functional and pharmacological inhibition studies.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 417 ◽  
Author(s):  
Teigell-Perez ◽  
Gonzalez-Martin ◽  
Valladares ◽  
Smith ◽  
Griffin

Culturable eubacterial isolates were collected at various altitudes in Earth’s atmosphere, including ~1.5 m above ground in Tallahassee, FL, USA; ~10.0 m above sea level over the mid-Atlantic ridge (~15° N); ~ 20 km above ground over the continental United States; ~20 km above sea level over the Pacific Ocean near southern California; and from the atmosphere of Carlsbad Cavern, Carlsbad Cavern National Park, NM, USA. Isolates were screened for the presence of inducible virus-like particles (VLP) through the use of mitomycin C and epifluorescent direct counts. We determined that 92.7% of the isolates carried inducible VLP counts in exposed versus non-exposed culture controls and that the relationship was statistically significant. Further statistical analyses revealed that the number of isolates that demonstrated VLP production did not vary among collection sites. These data demonstrate a high prevalence of VLP generation in isolates collected in the lower atmosphere and at extreme altitudes. They also show that species of eubacteria that are resistant to the rigors of atmospheric transport play a significant role in long-range atmospheric inter- and intra-continental dispersion of VLP and that long-range atmospheric transport of VLP may enhance rates of evolution at the microbial scale in receiving environments.


2020 ◽  
Vol 117 (7) ◽  
pp. 1929-1945 ◽  
Author(s):  
Irene González‐Domínguez ◽  
Eduard Puente‐Massaguer ◽  
Laura Cervera ◽  
Francesc Gòdia

2020 ◽  
Vol 322 ◽  
pp. 43-53 ◽  
Author(s):  
Eduard Puente-Massaguer ◽  
Francesc Gòdia ◽  
Martí Lecina

2010 ◽  
Vol 84 (18) ◽  
pp. 9118-9127 ◽  
Author(s):  
Yukihiro Kushima ◽  
Takaji Wakita ◽  
Makoto Hijikata

ABSTRACT Hepatitis C virus (HCV) core protein forms the nucleocapsid of the HCV particle. Although many functions of core protein have been reported, how the HCV particle is assembled is not well understood. Here we show that the nucleocapsid-like particle of HCV is composed of a disulfide-bonded core protein complex (dbc-complex). We also found that the disulfide-bonded dimer of the core protein (dbd-core) is formed at the endoplasmic reticulum (ER), where the core protein is initially produced and processed. Mutational analysis revealed that the cysteine residue at amino acid position 128 (Cys128) of the core protein, a highly conserved residue among almost all reported isolates, is responsible for dbd-core formation and virus-like particle production but has no effect on the replication of the HCV RNA genome or the several known functions of the core protein, including RNA binding ability and localization to the lipid droplet. The Cys128 mutant core protein showed a dominant negative effect in terms of HCV-like particle production. These results suggest that this disulfide bond is critical for the HCV virion. We also obtained the results that the dbc-complex in the nucleocapsid-like structure was sensitive to proteinase K but not trypsin digestion, suggesting that the capsid is built up of a tightly packed structure of the core protein, with its amino (N)-terminal arginine-rich region being concealed inside.


2002 ◽  
Vol 76 (11) ◽  
pp. 5472-5479 ◽  
Author(s):  
Bettina Strack ◽  
Arianna Calistri ◽  
Heinrich G. Göttlinger

ABSTRACT Retroviral Gag polyproteins contain regions that promote the separation of virus particles from the plasma membrane and from each other. These Gag regions are often referred to as late assembly (L) domains. The L domain of human immunodeficiency virus type 1 (HIV-1) is in the C-terminal p6 gag domain and harbors an essential P(T/S)APP motif, whereas the L domains of oncoretroviruses are in the N-terminal half of the Gag precursor and have a PPXY core motif. We recently observed that L domains induce the ubiquitination of a minimal HIV-1 Gag construct and that point mutations which abolish L domain activity prevent Gag ubiquitination. In that study, a peptide from the Ebola virus L domain with overlapping P(T/S)APP and PPXY motifs showed exceptional activity in promoting Gag ubiquitination and the release of virus-like particles. We now show that a substitution which disrupts the PPXY motif but leaves the P(T/S)APP motif intact abolishes L domain activity in the minimal Gag context, but not in the context of a near full-length HIV-1 Gag precursor. Our results reveal that the P(T/S)APP motif does not function autonomously and indicate that the HIV-1 nucleocapsid-p1 region, which is proximal to p6 gag , can cooperate with the conserved L domain core motif. We have also examined the effects of ubiquitin mutants on virus-like particle production, and the results indicate that residues required for the endocytosis function of ubiquitin are also involved in virus budding.


Sign in / Sign up

Export Citation Format

Share Document