scholarly journals In vitro Optimization of Ceftazidime/Avibactam for KPC-Producing Klebsiella pneumoniae

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanqin Huang ◽  
Tiffany Wu ◽  
Omar Perez ◽  
Amisha P. Rana ◽  
Liang Chen ◽  
...  

Ceftazidime/avibactam is an important treatment option for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp), however, resistance can emerge during treatment. The objective of the study was to define the ceftazidime/avibactam concentrations required to suppress bacterial regrowth in ceftazidime/avibactam susceptible isolates and identify active therapies against ceftazidime/avibactam-resistant KPC-Kp. Time-kill assays were performed against twelve ST258 KPC-Kp isolates that harbored blaKPC–2 or blaKPC–3. Nine KPC-Kp isolates (KPC-Kp 5A, 6A, 7A, 8A, 9A, 24A, 25A, 26A, and 27A) were susceptible to ceftazidime/avibactam, two (KPC-Kp 6B and 7B) were ceftazidime/avibactam resistant and meropenem susceptible, and one (KPC-Kp 1244) was resistant to both ceftazidime/avibactam and meropenem. Sequencing of the blaKPC genes revealed mutations in KPC-Kp 6B (D179Y substitution) and 7B (novel 21 base pair deletion) that both affected the Ω-loop encoding portion of the gene. Time-kill assays showed that against ceftazidime/avibactam-susceptible KPC-Kp, ceftazidime/avibactam concentrations ≥40/7.5 mg/L caused mean 5.42 log10CFU/mL killing and suppressed regrowth. However, regrowth occurred for some KPC-Kp isolates with a ceftazidime/avibactam concentration of 20/3.75 mg/L. Against ceftazidime/avibactam-resistant and meropenem-susceptible KPC-Kp 6B and 7B, bactericidal activity and synergy was observed for ceftazidime/avibactam in combination with meropenem ≤3.125 mg/L, while meropenem concentrations ≥50 mg/L were bactericidal as monotherapy. In contrast, clinically achievable concentrations of ceftazidime/avibactam were bactericidal against KPC-Kp 1244, which was ceftazidime/avibactam-resistant and meropenem-resistant due to outer membrane porin mutations and elevated blaKPC expression. Achieving high ceftazidime/avibactam concentrations may help to suppress bacterial regrowth in the presence of ceftazidime/avibactam. The optimal treatment approach for ceftazidime/avibactam-resistant KPC-Kp likely depends on the mechanism of resistance. Additional studies are warranted to confirm these findings.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S285-S285 ◽  
Author(s):  
Mohamad Yasmin ◽  
Steven Marshall ◽  
Michael Jacobs ◽  
Daniel D Rhoads ◽  
Laura J Rojas ◽  
...  

Abstract Background Vaborbactam is a cyclic boronic acid β-lactamase inhibitor (BLI) developed to potently inhibit Ambler class A&C enzymes, including KPC carbapenemases. Metallo-β-lactamases (MBL) and some Class D oxacillinases (OXA) are not inactivated by vaborbactam. Meropenem-vaborbactam (MV) was recently approved for the treatment of carbapenem-resistant Enterobacteriaceae complicated urinary tract infections. Recent studies have identified outer membrane porin (Ompk35 and -36) mutations in Klebsiella pneumoniae (KP) as a mechanism of decreased susceptibility to MV. We evaluated the activity of MV against a historical cohort of KP clinical isolates with these porin gene mutations. Methods WGS of carbapenem-resistant KP clinical isolates was performed and those harboring mutations in Ompk35 or Ompk36 were selected for testing. Strain KP ATCC BAA-1705 was used as a positive control. Meropenem and MV minimum inhibitory concentrations (MIC) were determined by broth microdilution (BMD) in custom 96-well plates (ThermoFisher Scientific) with a constant 8 µg/mL vaborbactam concentration. The MIC of ceftazidime–avibactam (CZA) was determined by standard BMD reference methods and interpreted according to CLSI criteria. Results A total of 105 KP isolates with either partial or complete mutations in outer membrane porin genes were included in the analysis. All isolates were resistant to Meropenem. The median MV MIC was 0.03 µg/mL (range, 0.015 to >16 µg/mL). Eleven isolates (10.4%) were resistant to MV. Sixteen additional isolates (16.1%) demonstrated higher than expected MV MICs ranging from 1 to 4 µg/mL. Only 1/11 resistant isolates harbored a gene for MBL production. Gene mutations in blaKPC were not detected. See Table 1 for characteristics of resistant isolates. Conclusion Resistance and decreased susceptibility to MV is demonstrated in a historical cohort of KP clinical isolates dating back to 2013. WGS reliably identifies porin variants secondary to gene mutations in Ompk35 and Ompk36 as the underlying mechanism of decreased susceptibility. CZA appears to retain activity against these isolates. Caution should be exercised regarding the empiric use of MV against increasingly resistant KP as a result of non-β-lactamase-mediated mechanisms. Disclosures All authors: No reported disclosures.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hung-Jen Tang ◽  
Yee-Huang Ku ◽  
Mei-Feng Lee ◽  
Yin-Ching Chuang ◽  
Wen-Liang Yu

We investigated the synergism of colistin and imipenem against a multidrug-resistantK. pneumoniaeisolate which was recovered from a severe hip infection. PCR and DNA sequencing were used to characterize the outer membrane porin genes and the resistance genes mediating the commonβ-lactamases and carbapenemases. Synergism was evaluated by time-kill studies. TheblaSHV-31,blaCMY-2, andblaDHA-1were detected. Outer membrane porin genes analysis revealed loss ofompK36and frame-shift mutation ofompK35. The common carbapenemase genes were not found. Time-kill studies demonstrated that a combination of 1x MIC of colistin (2 mg/L) and 1x MIC of imipenem (8 mg/L) was synergistic and bactericidal but with inoculum effect. Bactericidal activity without inoculum effect was observed by concentration of 2x MIC of colistin alone or plus 2x MIC of imipenem. In conclusion, colistin plus imipenem could be an alternative option to treat carbapenem-resistantK. pneumoniaeinfections.


2009 ◽  
Vol 53 (5) ◽  
pp. 2133-2135 ◽  
Author(s):  
Maria Souli ◽  
Panagiota Danai Rekatsina ◽  
Zoi Chryssouli ◽  
Irene Galani ◽  
Helen Giamarellou ◽  
...  

ABSTRACT Using time-kill methodology, we investigated the interactions of an imipenem-colistin combination against 42 genetically distinct Klebsiella pneumoniae clinical isolates carrying a bla VIM-1-type gene. Irrespective of the imipenem MIC, the combination was synergistic (50%) or indifferent (50%) against colistin-susceptible strains, while it was antagonistic (55.6%) and rarely synergistic (11%) against non-colistin-susceptible strains (with synergy being observed only against strains with colistin MICs of 3 to 4 μg/ml). The combination showed improved bactericidal activity against isolates susceptible either to both agents or to colistin.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
John K. Diep ◽  
David M. Jacobs ◽  
Rajnikant Sharma ◽  
Jenna Covelli ◽  
Dana R. Bowers ◽  
...  

ABSTRACT Safe and effective therapies are urgently needed to treat polymyxin-resistant KPC-producing Klebsiella pneumoniae infections and suppress the emergence of resistance. We investigated the pharmacodynamics of polymyxin B, rifampin, and meropenem alone and as polymyxin B-based double and triple combinations against KPC-producing K. pneumoniae isolates. The rates and extents of killing with polymyxin B (1 to 128 mg/liter), rifampin (2 to 16 mg/liter), and meropenem (10 to 120 mg/liter) were evaluated against polymyxin B-susceptible (PBs) and polymyxin B-resistant (PBr) clinical isolates using 48-h static time-kill studies. Additionally, humanized triple-drug regimens of polymyxin B (concentration at steady state [C ss] values of 0.5, 1, and 2 mg/liter), 600 mg rifampin every 12 or 8 h, and 1 or 2 g meropenem every 8 h dosed as an extended 3-h infusion were simulated over 48 h by using a one-compartment in vitro dynamic infection model. Serial bacterial counts were performed to quantify the pharmacodynamic effect. Population analysis profiles (PAPs) were used to assess the emergence of polymyxin B resistance. Monotherapy was ineffective against both isolates. Polymyxin B with rifampin demonstrated early bactericidal activity against the PBs isolate, followed by regrowth by 48 h. Bactericidal activity was sustained at all polymyxin B concentrations of ≥2 mg/liter in combination with meropenem. No two-drug combinations were effective against the PBr isolate, but all simulated triple-drug regimens showed early bactericidal activity against both strains by 8 h that was sustained over 48 h. PAPs did not reveal the emergence of resistant subpopulations. The triple-drug combination of polymyxin B, rifampin, and meropenem may be a viable consideration for the treatment of PBr KPC-producing K. pneumoniae infections. Further investigation is warranted to optimize triple-combination therapy.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2004 ◽  
Vol 48 (3) ◽  
pp. 1055-1057 ◽  
Author(s):  
Rose Jung ◽  
Maroof Husain ◽  
Michael K. Choi ◽  
Douglas N. Fish

ABSTRACT The bactericidal activity of moxifloxacin alone and in combination with cefepime or piperacillin-tazobactam against clinical isolates of Klebsiella pneumoniae, Enterobacter cloacae, and Acinetobacter baumannii was evaluated by using time-kill methods and antimicrobial concentrations of one-half and one times the MIC. Synergy was observed in 58 to 88% of the strains and resulted in bactericidal activity against 60 to 100% of the strains. Combinations including moxifloxacin demonstrated enhanced bactericidal activity compared with that of either agent tested alone.


1998 ◽  
Vol 36 (1) ◽  
pp. 266-268 ◽  
Author(s):  
L. S. Tzouvelekis ◽  
E. Tzelepi ◽  
E. Prinarakis ◽  
M. Gazouli ◽  
A. Katrahoura ◽  
...  

The sporadic emergence of Klebsiella pneumoniae strains resistant to cefepime and cefpirome was observed in Greek hospitals during 1996. Examination of six epidemiologically distinct strains and clones selected in vitro provided indications that resistance is due to the cooperation of decreased outer membrane permeability and hydrolysis of the cephalosporins by SHV-5 β-lactamase, which was produced in large amounts.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1174
Author(s):  
Pilar Lumbreras-Iglesias ◽  
M. Rosario Rodicio ◽  
Pablo Valledor ◽  
Tomás Suárez-Zarracina ◽  
Javier Fernández

The aim of this work was to analyze outer membrane porin-encoding genes (ompK35 and ompK36) in a collection of OXA-48 producing Klebsiella pneumoniae, to assess the effect of porin alterations on the susceptibility to ceftazidime/avibactam, and to describe a screening methodology for phenotypic detection of OXA-48-producing K. pneumoniae with disrupted porins. Antimicrobial susceptibility was tested by Microscan and Etest. The genomes of 81 OXA-48-producing K. pneumoniae were sequenced. MLST, detection of antimicrobial resistance genes, and analysis of ompK35 and ompK36 were performed in silico. Tridimensional structures of the OmpK36 variants were assessed. Receiver operating characteristics curves were built to visualize the performance ability of a disk diffusion assay using carbapenems and cefoxitin to detect OmpK36 functional alterations. A wide variety of OmpK36 alterations were detected in 17 OXA-48-producing K. pneumoniae isolates. All displayed a high-level meropenem resistance (MIC ≥ 8 mg/L), and some belonged to high-risk clones, such as ST15 and ST147. Alterations in ompK35 were also observed, but they did not correlate with high-level meropenem resistance. All isolates were susceptible to ceftazidime/avibactam and porin alterations did not affect the MICs of the latter combination. Cefoxitin together with ertapenem/meropenem low inhibition zone diameters (equal or lower than 16 mm) could strongly suggest alterations affecting OmpK36 in OXA-48-producing K. pneumoniae. OXA-48-producing K. pneumoniae with porin disruptions are a cause of concern; ceftazidime/avibactam showed good in vitro activity against them, so this combination could be positioned as the choice therapy to combat the infections caused by this difficult-to-treat isolates.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 696 ◽  
Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Razieh Kebriaei ◽  
Kyle C. Stamper ◽  
Zain Sheikh ◽  
Philip T. Maassen ◽  
...  

The most efficacious antimicrobial therapy to aid in the successful elimination of resistant S. aureus infections is unknown. In this study, we evaluated varying phenotypes of S. aureus against dalbavancin (DAL), vancomycin (VAN), and daptomycin (DAP) alone and in combination with cefazolin (CFZ). The objective of this study was to observe whether there was a therapeutic improvement in adding a beta-lactam to a glycopeptide, lipopeptide, or a lipoglycopeptide. We completed a series of in vitro tests including minimum inhibitory concentration testing (MIC) of the antimicrobials in combination, time-kill analysis (TKA), and a 168 h (7-day) one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model on two daptomycin non-susceptible (DNS), vancomycin intermediate S. aureus strains (VISA), D712 and 6913. Results from our MIC testing demonstrated a minimum 2-fold and a maximum 32-fold reduction in MIC values for DAL, VAN, and DAP in combination with CFZ, in contrast to either agent used alone. The TKAs completed on four strains paralleled the enhanced activity demonstrated via the combination MICs. In the one-compartment PK/PD models, the combination of DAP plus CFZ or VAN plus CFZ resulted in a significant (p < 0.001) improvement in bactericidal activity and overall reduction in CFU/ml over the 7-day period. While the addition of CFZ to DAL improved time to bactericidal activity, DAL alone demonstrated equal and more sustained overall activity compared to all other treatments. The use of DAL alone, with or without CFZ and the combinations of VAN or DAP with CFZ appear to result in increased bactericidal activity against various recalcitrant S. aureus phenotypes.


Sign in / Sign up

Export Citation Format

Share Document