scholarly journals High-Level Carbapenem Resistance among OXA-48-Producing Klebsiella pneumoniae with Functional OmpK36 Alterations: Maintenance of Ceftazidime/Avibactam Susceptibility

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1174
Author(s):  
Pilar Lumbreras-Iglesias ◽  
M. Rosario Rodicio ◽  
Pablo Valledor ◽  
Tomás Suárez-Zarracina ◽  
Javier Fernández

The aim of this work was to analyze outer membrane porin-encoding genes (ompK35 and ompK36) in a collection of OXA-48 producing Klebsiella pneumoniae, to assess the effect of porin alterations on the susceptibility to ceftazidime/avibactam, and to describe a screening methodology for phenotypic detection of OXA-48-producing K. pneumoniae with disrupted porins. Antimicrobial susceptibility was tested by Microscan and Etest. The genomes of 81 OXA-48-producing K. pneumoniae were sequenced. MLST, detection of antimicrobial resistance genes, and analysis of ompK35 and ompK36 were performed in silico. Tridimensional structures of the OmpK36 variants were assessed. Receiver operating characteristics curves were built to visualize the performance ability of a disk diffusion assay using carbapenems and cefoxitin to detect OmpK36 functional alterations. A wide variety of OmpK36 alterations were detected in 17 OXA-48-producing K. pneumoniae isolates. All displayed a high-level meropenem resistance (MIC ≥ 8 mg/L), and some belonged to high-risk clones, such as ST15 and ST147. Alterations in ompK35 were also observed, but they did not correlate with high-level meropenem resistance. All isolates were susceptible to ceftazidime/avibactam and porin alterations did not affect the MICs of the latter combination. Cefoxitin together with ertapenem/meropenem low inhibition zone diameters (equal or lower than 16 mm) could strongly suggest alterations affecting OmpK36 in OXA-48-producing K. pneumoniae. OXA-48-producing K. pneumoniae with porin disruptions are a cause of concern; ceftazidime/avibactam showed good in vitro activity against them, so this combination could be positioned as the choice therapy to combat the infections caused by this difficult-to-treat isolates.

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S412-S413
Author(s):  
Michael R Jacobs ◽  
Caryn E Good ◽  
Ayman M Abdelhamed ◽  
Daniel D Rhoads ◽  
Kristine M Hujer ◽  
...  

Abstract Background Plazomicin is a next-generation aminoglycoside with in vitro activity against multidrug-resistant Gram-negative species, including carbapenem-resistant isolates. The Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE) is a federally funded, prospective multicenter consortium of 20 hospitals from nine US healthcare systems to track carbapenem-resistant Enterobacteriaceae. Methods Minimum inhibitory concentrations (MICs) of plazomicin were determined by broth microdilution according to current CLSI guidelines against a collection of 697 carbapenem-resistant Klebsiella pneumoniae with defined carbapenem resistance mechanisms, including KPC and OXA carbapenemases. Isolates were submitted by participating CRACKLE centers. Results Carbapenemases present in study isolates included KPC-2 (n = 323), KPC-3 (n = 364), KPC-4 (n = 2), OXA-48 like (n = 7), and NDM (n = 1). Plazomicin MICs ranged from ≤0.12 to >32 mg/L, with MIC50 and MIC90 values of 0.25 and 1 mg/L, respectively (figure). MICs of 689 (98.8%) isolates were ≤4 mg/L, while MICs of the remaining eight isolates were >32 mg/L. Plazomicin MICs were related to specific carbapenemases present in isolates: of eight isolates with MICs >32 mg/L, seven contained OXA-48 like and one contained KPC-3, suggesting that these isolates possess an aminoglycoside-resistance mechanism on the same plasmid as their carbapenemase gene, such as a 16S ribosomal RNA methyltransferase, against which plazomicin is not active. Conclusion Plazomicin has good in vitro potency against a collection of carbapenemase-producing K. pneumoniae, with MIC90 value of 1 mg/L and MICs of ≤4 mg/L for 98.9% of isolates. Disclosures M. R. Jacobs, Achaogen: Investigator, Research grant. Shionogi: Investigator, Research grant. L. Connolly, Achaogen, Inc.: Consultant, Consulting fee. K. M. Krause, Achaogen: Employee, Salary. S. S. Richter, bioMerieux: Grant Investigator, Research grant. BD Diagnostics: Grant Investigator, Research grant. Roche: Grant Investigator, Research grant. Hologic: Grant Investigator, Research grant. Diasorin: Grant Investigator, Research grant. Accelerate: Grant Investigator, Research grant. Biofire: Grant Investigator, Research grant. D. Van Duin, achaogen: Scientific Advisor, Consulting fee. shionogi: Scientific Advisor, Consulting fee. Allergan: Scientific Advisor, Consulting fee. Astellas: Scientific Advisor, Consulting fee. Neumedicine: Scientific Advisor, Consulting fee. Roche: Scientific Advisor, Consulting fee. T2 Biosystems: Scientific Advisor, Consulting fee.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 272 ◽  
Author(s):  
Ramona Iseppi ◽  
Alessandro Di Cerbo ◽  
Piero Aloisi ◽  
Mattia Manelli ◽  
Veronica Pellesi ◽  
...  

The aim of this study was to analyze the antibacterial activity of four essential oils (EOs), Melaleuca alternifolia, Eucalyptus globulus, Mentha piperita, and Thymus vulgaris, in preventing the development and spread of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa and carbapenemase (KPC)-producing Klebsiella pneumoniae. A total of 60 strains were obtained from the stock collection from the Microbiology Laboratory of Hesperia Hospital, Modena, Italy. Twenty ESBL-producing E. coli, 5 K. pneumoniae, 13 KPC-producing K. pneumoniae, and 20 MBL-producing P. aeruginosa were cultured and reconfirmed as ESBL and carbapenamase producers. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (ESBL and KPC/MBL). Antibacterial activity of the EOs was determined using the agar disk diffusion assay, and minimal inhibitory concentrations (MICs) were also evaluated. Lastly, adhesion capability and biofilm formation on polystyrene and glass surfaces were studied in 24 randomly selected strains. M. alternifolia and T. vulgaris EOs showed the best antibacterial activity against all tested strains and, as revealed by agar disk diffusion assay, M. alternifolia was the most effective, even at low concentrations. This effect was also confirmed by MICs, with values ranging from 0.5 to 16 µg/mL and from 1 to 16 µg/mL, for M. alternifolia and T. vulgaris EOs, respectively. The EOs’ antibacterial activity compared to antibiotics confirmed M. alternifolia EO as the best antibacterial agent. T. vulgaris EO also showed a good antibacterial activity with MICs lower than both reference antibiotics. Lastly, a significant anti-biofilm activity was observed for the two EOs (*P < 0.05 and **P < 0.01 for M. alternifolia and T. vulgaris EOs, respectively). A good antibacterial and anti-biofilm activity of M. alternifolia and T. vulgaris EOs against all selected strains was observed, thus demonstrating a future possible use of these EOs to treat infections caused by ESBL/carbapenemase-producing strains, even in association with antibiotics.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S285-S285 ◽  
Author(s):  
Mohamad Yasmin ◽  
Steven Marshall ◽  
Michael Jacobs ◽  
Daniel D Rhoads ◽  
Laura J Rojas ◽  
...  

Abstract Background Vaborbactam is a cyclic boronic acid β-lactamase inhibitor (BLI) developed to potently inhibit Ambler class A&C enzymes, including KPC carbapenemases. Metallo-β-lactamases (MBL) and some Class D oxacillinases (OXA) are not inactivated by vaborbactam. Meropenem-vaborbactam (MV) was recently approved for the treatment of carbapenem-resistant Enterobacteriaceae complicated urinary tract infections. Recent studies have identified outer membrane porin (Ompk35 and -36) mutations in Klebsiella pneumoniae (KP) as a mechanism of decreased susceptibility to MV. We evaluated the activity of MV against a historical cohort of KP clinical isolates with these porin gene mutations. Methods WGS of carbapenem-resistant KP clinical isolates was performed and those harboring mutations in Ompk35 or Ompk36 were selected for testing. Strain KP ATCC BAA-1705 was used as a positive control. Meropenem and MV minimum inhibitory concentrations (MIC) were determined by broth microdilution (BMD) in custom 96-well plates (ThermoFisher Scientific) with a constant 8 µg/mL vaborbactam concentration. The MIC of ceftazidime–avibactam (CZA) was determined by standard BMD reference methods and interpreted according to CLSI criteria. Results A total of 105 KP isolates with either partial or complete mutations in outer membrane porin genes were included in the analysis. All isolates were resistant to Meropenem. The median MV MIC was 0.03 µg/mL (range, 0.015 to >16 µg/mL). Eleven isolates (10.4%) were resistant to MV. Sixteen additional isolates (16.1%) demonstrated higher than expected MV MICs ranging from 1 to 4 µg/mL. Only 1/11 resistant isolates harbored a gene for MBL production. Gene mutations in blaKPC were not detected. See Table 1 for characteristics of resistant isolates. Conclusion Resistance and decreased susceptibility to MV is demonstrated in a historical cohort of KP clinical isolates dating back to 2013. WGS reliably identifies porin variants secondary to gene mutations in Ompk35 and Ompk36 as the underlying mechanism of decreased susceptibility. CZA appears to retain activity against these isolates. Caution should be exercised regarding the empiric use of MV against increasingly resistant KP as a result of non-β-lactamase-mediated mechanisms. Disclosures All authors: No reported disclosures.


2011 ◽  
Vol 55 (10) ◽  
pp. 4742-4747 ◽  
Author(s):  
Laura García-Sureda ◽  
Antonio Doménech-Sánchez ◽  
Mariette Barbier ◽  
Carlos Juan ◽  
Joan Gascó ◽  
...  

ABSTRACTClinical isolates ofKlebsiella pneumoniaeresistant to carbapenems are being isolated with increasing frequency. Loss of the expression of the major nonspecific porins OmpK35/36 is a frequent feature in these isolates. In this study, we looked for porins that could compensate for the loss of the major porins in carbapenem-resistant organisms. Comparison of the outer membrane proteins from twoK. pneumoniaeclinical isogenic isolates that are susceptible (KpCS-1) and resistant (KpCR-1) to carbapenems revealed the absence of OmpK35/36 and the presence of a new 26-kDa protein in the resistant isolate. An identical result was obtained when another pair of isogenic isolates that are homoresistant (Kpn-3) and heteroresistant (Kpn-17) to carbapenems were compared. Mass spectrometry and DNA sequencing analysis demonstrated that this new protein, designated OmpK26, is a small monomeric oligogalacturonate-specific porin that belongs to the KdgM family of porins. Insertion-duplication mutagenesis of the OmpK26 coding gene,yjhA, in the carbapenem-resistant, porin-deficient isolate KpCR-1 caused the expression of OmpK36 and the reversion to the carbapenem-susceptible phenotype, suggesting that OmpK26 is indispensable for KpCR-1 to lose OmpK36 and become resistant to these antibiotics. Moreover, loss of the major porin and expression of OmpK26 reducedin vitrofitness and attenuated virulence in a murine model of acute systemic infection. Altogether, these results indicate that expression of the oligogalacturonate-specific porin OmpK26 compensates for the absence of OmpK35/36 and allows carbapenem resistance inK. pneumoniaebut cannot restore the fitness of the microorganism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanqin Huang ◽  
Tiffany Wu ◽  
Omar Perez ◽  
Amisha P. Rana ◽  
Liang Chen ◽  
...  

Ceftazidime/avibactam is an important treatment option for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp), however, resistance can emerge during treatment. The objective of the study was to define the ceftazidime/avibactam concentrations required to suppress bacterial regrowth in ceftazidime/avibactam susceptible isolates and identify active therapies against ceftazidime/avibactam-resistant KPC-Kp. Time-kill assays were performed against twelve ST258 KPC-Kp isolates that harbored blaKPC–2 or blaKPC–3. Nine KPC-Kp isolates (KPC-Kp 5A, 6A, 7A, 8A, 9A, 24A, 25A, 26A, and 27A) were susceptible to ceftazidime/avibactam, two (KPC-Kp 6B and 7B) were ceftazidime/avibactam resistant and meropenem susceptible, and one (KPC-Kp 1244) was resistant to both ceftazidime/avibactam and meropenem. Sequencing of the blaKPC genes revealed mutations in KPC-Kp 6B (D179Y substitution) and 7B (novel 21 base pair deletion) that both affected the Ω-loop encoding portion of the gene. Time-kill assays showed that against ceftazidime/avibactam-susceptible KPC-Kp, ceftazidime/avibactam concentrations ≥40/7.5 mg/L caused mean 5.42 log10CFU/mL killing and suppressed regrowth. However, regrowth occurred for some KPC-Kp isolates with a ceftazidime/avibactam concentration of 20/3.75 mg/L. Against ceftazidime/avibactam-resistant and meropenem-susceptible KPC-Kp 6B and 7B, bactericidal activity and synergy was observed for ceftazidime/avibactam in combination with meropenem ≤3.125 mg/L, while meropenem concentrations ≥50 mg/L were bactericidal as monotherapy. In contrast, clinically achievable concentrations of ceftazidime/avibactam were bactericidal against KPC-Kp 1244, which was ceftazidime/avibactam-resistant and meropenem-resistant due to outer membrane porin mutations and elevated blaKPC expression. Achieving high ceftazidime/avibactam concentrations may help to suppress bacterial regrowth in the presence of ceftazidime/avibactam. The optimal treatment approach for ceftazidime/avibactam-resistant KPC-Kp likely depends on the mechanism of resistance. Additional studies are warranted to confirm these findings.


Author(s):  
Chaitra Shankar ◽  
Soumya Basu ◽  
Binesh Lal ◽  
Sathiya Shanmugam ◽  
Karthick Vasudevan ◽  
...  

BackgroundThe incidence of hypervirulent (hv) carbapenem-resistant (CR) Klebsiella pneumoniae (Kp) is increasing globally among various clones and is also responsible for nosocomial infections. The CR-hvKp is formed by the uptake of a virulence plasmid by endemic high-risk clones or by the uptake of plasmids carrying antimicrobial resistance genes by the virulent clones. Here, we describe CR-hvKp from India belonging to high-risk clones that have acquired a virulence plasmid and are phenotypically unidentified due to lack of hypermucoviscosity.MethodsTwenty-seven CRKp isolates were identified to possess rmpA2 by whole-genome sequencing; and resistance and virulence determinants were characterized. By in silico protein modeling (and validation), protein backbone stability analysis, and coarse dynamics study, the fitness of RmpA, RmpA2, and aerobactin-associated proteins-IucA and IutA, were determined to establish a reliable marker for clinical identification of CR-hvKp.ResultsThe CR-hvKp belonged to multidrug-resistant (MDR) high-risk clones such as CG11, CG43, ST15, and ST231 and carried OXA-232 as the predominant carbapenemase followed by NDM. The virulence plasmid belonged to IncHI1B replicon type and carried frameshifted and truncated rmpA and rmpA2. This resulted in a lack of hypermucoviscous phenotype. However, functional aerobactin was expressed in all high-risk clones. In silico analysis portrayed that IucA and IutA were more stable than classical RmpA. Furthermore, IucA and IutA had lower conformational fluctuations in the functional domains than the non-functional RmpA2, which increases the fitness cost of the latter for its maintenance and expression among CR-hvKp. Hence, RmpA and RmpA2 are likely to be lost among CR-hvKp owing to the increased fitness cost while coding for essential antimicrobial resistance and virulence factors.ConclusionIncreasing incidence of convergence of AMR and virulence is observed among K. pneumoniae globally, which warrants the need for reliable markers for identifying CR-hvKp. The presence of non-functional RmpA2 among high-risk clones highlights the significance of molecular identification of CR-hvKp. The negative string test due to non-functional RmpA2 among CR-hvKp isolates challenges phenotypic screening and faster identification of this pathotype. This can potentially be counteracted by projecting aerobactin as a stable, constitutively expressed, and functional marker for rapidly evolving CR-hvKp.


2020 ◽  
Author(s):  
Jun-Ying Zhu ◽  
Guang-Yu Wang ◽  
Qing Wei ◽  
Zhen Shen ◽  
Qiong Li ◽  
...  

Abstract Background: Although carbapenem-resistant Klebsiella pneumoniae (CRKP) and hypermucoviscous K. pneumoniae (HMKP) were largely non-overlapping, the recent emergence of CR-HMKP has raised great alarm in the world. We compared the molecular characteristics of CRKP, HMKP and CR-HMKP isolates.Results: 220 cases of K. pneumoniae isolates was collected and identified between Jan 2015 and Dec 2016 from Renji Hospital. Carbapenem resistance test and string test were performed to screen CRKP, HMKP and CR-HMKP isolates. All the CRKP, HMKP and CR-HMKP isolates were investigated for capsular genotyping, virulence genes and resistance genes by PCR and DNA sequencing. Multilocus sequence typing (MLST) was used to characterize isolates sequence types (STs). Serum killing assay and mouse lethality assay were respectively performed to confirm the virulence of the isolates in vitro and in vivo. Of 220 K. pneumoniae,71 HMKP, 84 CRKP and 8 CR-HMKP were identified. Resistance rate to carbapenems was significantly higher in CRKP than HMKP and CR-HMKP. For MLST and serotyping, ST23 (26.8%),K1 (33.8%) and K2 (23.9%) serotypes were the most common in HMKP isolates while ST11 (84.5%, 100%) and K-nontypable (91.6%, 100%) were the predominant types in CRKP and CR-HMKP isolates. The existence of virulence genes rmpA, magA and iutA was significantly higher in HMKP while the prevalence of resistance gene blaKPC-2 was higher in CRKP and CR-HMKP. Virulence test in vivo and in vitro both showed the lower virulence of CRKP and CR-HMKP compared to HMKP.Conclusions: In spite of low virulence, the emergence of CR-HMKP indicates a confluence of hypermucoviscous phenotype and carbapenem resistance. Furthermore, the similar molecular characteristics between CRKP and CR-HMKP suggested that CR-HMKP might evolve from CRKP.


Author(s):  
Maria Chatzidimitriou ◽  
Panagiota Chatzivasileiou ◽  
Georgios Sakellariou ◽  
MariaAnna Kyriazidi ◽  
Asimoula Kavvada ◽  
...  

AbstractThe present study evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents.Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki between 2016 and 2018. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomérieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used to detect blaKPC, blaVIM, blaNDM and blaOXA-48 genes.The meropenem–EDTA and meropenem–boronic acid synergy test performed on the 24 K. pneumoniae strains demonstrated that 8 (33.3%) yielded positive for metallo-beta-lactamases (MBL) and 16 (66.6%) for K. pneumonia carbapenemases (KPC) production. Colistin demonstrated the highest in vitro activity (87.7%) among the 47 K. pneumoniae strains followed by gentamicin (76.5%) and tigecycline (51%). Among new antibiotics ceftazidime/avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacycline (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected.Well established antimicrobial agents such as colistin, gentamicin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline can be reliable options for the treatment of invasive infections caused by carbapenem-resistant K. pneumoniae.


2010 ◽  
Vol 54 (10) ◽  
pp. 4201-4207 ◽  
Author(s):  
Brandon Kitchel ◽  
J. Kamile Rasheed ◽  
Andrea Endimiani ◽  
Andrea M. Hujer ◽  
Karen F. Anderson ◽  
...  

ABSTRACT In the United States, the most prevalent mechanism of carbapenem resistance among Enterobacteriaceae is the production of a Klebsiella pneumoniae carbapenemase (KPC). KPC-producing isolates often exhibit a range of carbapenem MICs. To better understand the factors that contribute to overall carbapenem resistance, we analyzed 27 KPC-producing K. pneumoniae isolates with different levels of carbapenem resistance, 11 with low-level (i.e., meropenem or imipenem MIC ≤ 4 μg/ml), 2 with intermediate-level (i.e., meropenem and imipenem MIC = 8 μg/ml), and 14 with high-level (i.e., imipenem or meropenem MIC ≥ 16 μg/ml) carbapenem resistance, that were received from throughout the United States. Among 14 isolates that exhibited high-level carbapenem resistance, Western blot analysis indicated that 10 produced an elevated amount of KPC. These isolates either contained an increased bla KPC gene copy number (n = 3) or had deletions directly upstream of the bla KPC gene (n = 7). Four additional isolates lacked elevated KPC production but had high-level carbapenem resistance. Porin sequencing analysis identified 22 isolates potentially lacking a functional OmpK35 and three isolates potentially lacking a functional OmpK36. The highest carbapenem MICs were found in two isolates that lacked both functioning porins and produced elevated amounts of KPC. The 11 isolates with low-level carbapenem resistance contained neither an upstream deletion nor increased bla KPC copy number. These results suggest that both bla KPC copy number and deletions in the upstream genetic environment affect the level of KPC production and may contribute to high-level carbapenem resistance in KPC-producing K. pneumoniae, particularly when coupled with OmpK36 porin loss.


2015 ◽  
Vol 59 (6) ◽  
pp. 3281-3289 ◽  
Author(s):  
Sheila Adams-Sapper ◽  
Shantell Nolen ◽  
Grace Fox Donzelli ◽  
Mallika Lal ◽  
Kunihiko Chen ◽  
...  

ABSTRACTEnterobacteriaceaestrains producing theKlebsiella pneumoniaecarbapenemase (KPC) have disseminated worldwide, causing an urgent threat to public health. KPC-producing strains often exhibit low-level carbapenem resistance, which may be missed by automated clinical detection systems. In this study, eightKlebsiella pneumoniaestrains with heterogeneous resistance to imipenem were used to elucidate the factors leading from imipenem susceptibility to high-level resistance as defined by clinical laboratory testing standards. Time-kill analysis with an inoculum as low as 3 × 106CFU/ml and concentrations of imipenem 8- and 16-fold higher than the MIC resulted in the initial killing of 99.9% of the population. However, full recovery of the population occurred by 20 h of incubation in the same drug concentrations. Population profiles showed that recovery was mediated by a heteroresistant subpopulation at a frequency of 2 × 10−7to 3 × 10−6. Samples selected 2 h after exposure to imipenem were as susceptible as the unexposed parental strain and produced the major outer membrane porin OmpK36. However, between 4 to 8 h after exposure, OmpK36 became absent, and the imipenem MIC increased at least 32-fold. Individual colonies isolated from cultures after 20 h of exposure revealed both susceptible and resistant subpopulations. Once induced, however, the high-level imipenem resistance was maintained, and OmpK36 remained unexpressed even without continued carbapenem exposure. This study demonstrates the essential coordination betweenblaKPCandompK36expression mediating high-level imipenem resistance from a population of bacteria that initially exhibits a carbapenem-susceptibility phenotype.


Sign in / Sign up

Export Citation Format

Share Document