scholarly journals FiberGrowth Pipeline: A Framework Toward Predicting Fiber-Specific Growth From Human Gut Bacteroidetes Genomes

2021 ◽  
Vol 12 ◽  
Author(s):  
Bénédicte Colnet ◽  
Christian M. K. Sieber ◽  
Fanny Perraudeau ◽  
Marion Leclerc

Dietary fibers impact gut colonic health, through the production of short-chain fatty acids. A low-fiber diet has been linked to lower bacterial diversity, obesity, type 2 diabetes, and promotion of mucosal pathogens. Glycoside hydrolases (GHs) are important enzymes involved in the bacterial catabolism of fiber into short-chain fatty acids. However, the GH involved in glycan breakdown (adhesion, hydrolysis, and fermentation) are organized in polysaccharide utilization loci (PUL) with complex modularity. Our goal was to explore how the capacity of strains, from the Bacteroidetes phylum, to grow on fiber could be predicted from their genome sequences. We designed an in silico pipeline called FiberGrowth and independently validated it for seven different fibers, on 28 genomes from Bacteroidetes-type strains. To do so, we compared the existing GH annotation tools and built PUL models by using published growth and gene expression data. FiberGrowth’s prediction performance in terms of true positive rate (TPR) and false positive rate (FPR) strongly depended on available data and fiber: arabinoxylan (TPR: 0.89 and FPR: 0), inulin (0.95 and 0.33), heparin (0.8 and 0.22) laminarin (0.38 and 0.17), levan (0.3 and 0.06), mucus (0.13 and 0.38), and starch (0.73 and 0.41). Being able to better predict fiber breakdown by bacterial strains would help to understand their impact on human nutrition and health. Assuming further gene expression experiment along with discoveries on structural analysis, we hope computational tools like FiberGrowth will help researchers prioritize and design in vitro experiments.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

2020 ◽  
Vol 245 (2) ◽  
pp. 166-175 ◽  
Author(s):  
Maksymilian Onyszkiewicz ◽  
Kinga Jaworska ◽  
Marcin Ufnal

Ample evidence suggests that gut microbiota-derived products affect the circulatory system functions. For instance, short chain fatty acids, that are the products of dietary fiber bacterial fermentation, have been found to dilate blood vessels and lower blood pressure. Trimethylamine, a gut bacteria metabolite of carnitine and choline, has recently emerged as a potentially toxic molecule for the circulatory system. To enter the bloodstream, microbiota products cross the gut–blood barrier, a multilayer system of the intestinal wall. Notably, experimental and clinical studies show that cardiovascular diseases may compromise function of the gut–blood barrier and increase gut-to-blood penetration of microbiota-derived molecules. Hence, the bacteria products and the gut–blood barrier may be potential diagnostic and therapeutic targets in cardiovascular diseases. In this paper, we review research on the cardiovascular effects of microbiota-produced short chain fatty acids and methylamines. Impact statement Despite a progress in the diagnosis and treatment of cardiovascular diseases, there are still significant gaps in understanding complex mechanisms underlying cardiovascular pathology. Increasing evidence suggests that gut microbiota products such as short chain fatty acids or methylamines may affect the circulatory system in health and disease. Hence, the microbiota-derived molecules are potential diagnostic and therapeutic targets in cardiovascular diseases. Therapeutic options may include administration of selected bacterial strains (probiotics) producing desired metabolites or administration of direct gut microbiota products.


Gut ◽  
1996 ◽  
Vol 38 (1) ◽  
pp. 53-58 ◽  
Author(s):  
C Cherbut ◽  
A C Aube ◽  
H M Blottiere ◽  
P Pacaud ◽  
C Scarpignato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document