scholarly journals A Homeodomain-Containing Transcriptional Factor PoHtf1 Regulated the Development and Cellulase Expression in Penicillium oxalicum

2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Guo ◽  
Gen Xu ◽  
Ruimei Wu ◽  
Zhigang Li ◽  
Mengdi Yan ◽  
...  

Homeodomain-containing transcription factors (Htfs) play important roles in animals, fungi, and plants during some developmental processes. Here, a homeodomain-containing transcription factor PoHtf1 was functionally characterized in the cellulase-producing fungi Penicillium oxalicum 114-2. PoHtf1 was shown to participate in colony growth and conidiation through regulating the expression of its downstream transcription factor BrlA, the key regulator of conidiation in P. oxalicum 114-2. Additionally, PoHtf1 inhibited the expression of the major cellulase genes by coordinated regulation of cellulolytic regulators CreA, AmyR, ClrB, and XlnR. Furthermore, transcriptome analysis showed that PoHtf1 participated in the secondary metabolism including the pathway synthesizing conidial yellow pigment. These data show that PoHtf1 mediates the complex transcriptional-regulatory network cascade between developmental processes and cellulolytic gene expression in P. oxalicum 114-2. Our results should assist the development of strategies for the metabolic engineering of mutants for applications in the enzymatic hydrolysis for biochemical production.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Malobi Nandi ◽  
Kriti Sikri ◽  
Neha Chaudhary ◽  
Shekhar Chintamani Mande ◽  
Ravi Datta Sharma ◽  
...  

Abstract Background Latent tuberculosis infection is attributed in part to the existence of Mycobacterium tuberculosis in a persistent non-replicating dormant state that is associated with tolerance to host defence mechanisms and antibiotics. We have recently reported that vitamin C treatment of M. tuberculosis triggers the rapid development of bacterial dormancy. Temporal genome-wide transcriptome analysis has revealed that vitamin C-induced dormancy is associated with a large-scale modulation of gene expression in M. tuberculosis. Results An updated transcriptional regulatory network of M.tuberculosis (Mtb-TRN) consisting of 178 regulators and 3432 target genes was constructed. The temporal transcriptome data generated in response to vitamin C was overlaid on the Mtb-TRN (vitamin C Mtb-TRN) to derive insights into the transcriptional regulatory features in vitamin C-adapted bacteria. Statistical analysis using Fisher’s exact test predicted that 56 regulators play a central role in modulating genes which are involved in growth, respiration, metabolism and repair functions. Rv0348, DevR, MprA and RegX3 participate in a core temporal regulatory response during 0.25 h to 8 h of vitamin C treatment. Temporal network analysis further revealed Rv0348 to be the most prominent hub regulator with maximum interactions in the vitamin C Mtb-TRN. Experimental analysis revealed that Rv0348 and DevR proteins interact with each other, and this interaction results in an enhanced binding of DevR to its target promoter. These findings, together with the enhanced expression of devR and Rv0348 transcriptional regulators, indicate a second-level regulation of target genes through transcription factor- transcription factor interactions. Conclusions Temporal regulatory analysis of the vitamin C Mtb-TRN revealed that there is involvement of multiple regulators during bacterial adaptation to dormancy. Our findings suggest that Rv0348 is a prominent hub regulator in the vitamin C model and large-scale modulation of gene expression is achieved through interactions of Rv0348 with other transcriptional regulators.


mSystems ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
David Bergenholm ◽  
Guodong Liu ◽  
Petter Holland ◽  
Jens Nielsen

ABSTRACT To build transcription regulatory networks, transcription factor binding must be analyzed in cells grown under different conditions because their responses and targets differ depending on environmental conditions. We performed whole-genome analysis of the DNA binding of five Saccharomyces cerevisiae transcription factors involved in lipid metabolism, Ino2, Ino4, Hap1, Oaf1, and Pip2, in response to four different environmental conditions in chemostat cultures, which allowed us to keep the specific growth rate constant. Chromatin immunoprecipitation with lambda exonuclease digestion (ChIP-exo) enabled the detection of binding events at a high resolution. We discovered a large number of unidentified targets and thus expanded functions for each transcription factor (e.g., glutamate biosynthesis as a target of Oaf1 and Pip2). Moreover, condition-dependent binding of transcription factors in response to cell metabolic state (e.g., differential binding of Ino2 between fermentative and respiratory metabolic conditions) was clearly suggested. Combining the new binding data with previously published data from transcription factor deletion studies revealed the high complexity of the transcriptional regulatory network for lipid metabolism in yeast, which involves the combinatorial and complementary regulation by multiple transcription factors. We anticipate that our work will provide insights into transcription factor binding dynamics that will prove useful for the understanding of transcription regulatory networks. IMPORTANCE Transcription factors play a crucial role in the regulation of gene expression and adaptation to different environments. To better understand the underlying roles of these adaptations, we performed experiments that give us high-resolution binding of transcription factors to their targets. We investigated five transcription factors involved in lipid metabolism in yeast, and we discovered multiple novel targets and condition-specific responses that allow us to draw a better regulatory map of the lipid metabolism.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Guodong Liu ◽  
David Bergenholm ◽  
Jens Nielsen

ABSTRACT In the model eukaryote Saccharomyces cerevisiae , the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol but hardly binds to the promoter at any gene when cells are grown on glucose. The retarded growth of the CST6 deletion mutant on ethanol is attributed to the markedly decreased expression of NCE103 , encoding a carbonic anhydrase, which is a direct target of Cst6p. The target genes of Cst6p have a large overlap with those of stress-responsive transcription factors, such as Sko1p and Skn7p. In addition, a CST6 deletion mutant growing on ethanol shows hypersensitivity to oxidative stress and ethanol stress, assigning Cst6p as a new member of the stress-responsive transcriptional regulatory network. These results show that mapping of genome-wide binding sites can provide new insights into the function of transcription factors and highlight the highly connected and condition-dependent nature of the transcriptional regulatory network in S. cerevisiae . IMPORTANCE Transcription factors regulate the activity of various biological processes through binding to specific DNA sequences. Therefore, the determination of binding positions is important for the understanding of the regulatory effects of transcription factors. In the model eukaryote Saccharomyces cerevisiae , the transcription factor Cst6p has been reported to regulate several biological processes, while its genome-wide targets remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. We show that the binding of Cst6p to its target promoters is condition dependent and explain the mechanism for the retarded growth of the CST6 deletion mutant on ethanol. Furthermore, we demonstrate that Cst6p is a new member of a stress-responsive transcriptional regulatory network. These results provide deeper understanding of the function of the dynamic transcriptional regulatory network in S. cerevisiae .


Sign in / Sign up

Export Citation Format

Share Document