scholarly journals Age-Related Changes in the Ruminal Microbiota and Their Relationship With Rumen Fermentation in Lambs

2021 ◽  
Vol 12 ◽  
Author(s):  
Xuejiao Yin ◽  
Shoukun Ji ◽  
Chunhui Duan ◽  
Peizhi Tian ◽  
Sisi Ju ◽  
...  

The rumen microbiota is vital for the health and growth performance of the host animal, mainly due to its role in the fermentation of ingested feed within the rumen. Attaining a better understanding of the development of the bacterial community and fermentation in the rumen can provide the theoretical basis for regulating feed utilization. This study analyzed the development of rumen bacteria in lambs from birth to 4 months of age using 16S-rRNA amplicon sequencing data and studied its relationship with ruminal fermentation. Serum levels of metabolites were monitored at 30, 60, 90, and 120 days of age, and the RandomForest approach was used to determine age-related changes in rumen bacteria. Levels of blood metabolites, ruminal fermentation, the rumen bacterial community and its functions were all affected by the age of the lambs (P < 0.05). Based on the Bray-Curtis distance within the age groups of the rumen microbiota, the similarity increased sharply after the lambs were weaned at 60 days of age (P < 0.05). The similarity between the samples collected from birth to 90 days of age and those collected at 120 days of age, increased after 20 days of age, reaching a maximum at 90 days vs. 120 days (P < 0.05). Some age-associated changes in the microbial genera were correlated with changes in the concentrations of volatile fatty acids and the levels of microbial crude protein in the rumen, including positive correlations between main volatile fatty acids and the genera of Prevotella 1, Lachnospiraceae NK3A20 group, Ruminococcus gauvreauii group, Ruminococcaceae UCG-014, and Ruminococcus 2 (P < 0.05). These results indicated that the microbial community and the function of rumen was not well-established before 20 days of age, so there is a degree of plasticity in the rumen bacterial community during the first 20 days of post-natal development in lambs, and this might provide an opportunity for interventions to improve rumen fermentation and, thus, increase their growth performance.

2018 ◽  
Vol 39 (6) ◽  
pp. 2621
Author(s):  
Ludmila Couto Gomes ◽  
Claudete Regina Alcalde ◽  
Julio Cesar Damasceno ◽  
Luiz Paulo Rigolon ◽  
Ana Paula Silva Possamai ◽  
...  

Feeding goats with calcium salts of fatty acids (CSFA) can supply ruminants with lipids, with minimal effects on ruminal fermentation and fiber digestibility. However, there is a shortage of information on the effect of CSFA on characteristics of rumen fermentation in grassland goats. Thus, the present study aimed to assess the addition of CSFA to concentrate on the parameters of rumen fermentation of grazing goats. Five rumen cannulated goats were distributed in a Latin square 5x5 design (treatments: 0%, 1.5%, 3.0%, 4.5% and 6.0% CSFA. The pH, ammonia N and volatile fatty acids (VFA) content were analyzed in the ruminal fluid at 0, 2, 4, 6 and 8 hours after concentrate supplementation. The pH and ammonia N concentration showed a linear effect with the addition of CSFA. There was no effect observed for the VFA molar concentration after grazing goats were fed with the experimental diet. In conclusion, further research is needed to investigate the addition of CSFA to goat diets because there is evidence that CSFA increases ruminal pH and decreases excess ruminal ammonia without changing the VFA concentration in the rumen fluid.


2021 ◽  
Author(s):  
Sonny Ramos ◽  
Seon Ho Kim ◽  
Chang Dae Jeong ◽  
Lovelia L. Mamuad ◽  
A-rang Son ◽  
...  

Abstract Background: Rumen bacterial community is mainly affected by the type of diet consumed by the host animals. High concentrate diet increases the abundance of lactic acid producers and utilizers due to high level of non-structural carbohydrates thus reducing the number of fiber-degrading bacteria because of drastic decrease in pH. Dietary buffers are essential in regulating rumen pH through the compounds responsible in resisting drastic decrease in pH once cattle were fed with high-concentrate diet. However, no study has evaluated the effects of buffering capacity and efficiency in alleviating chronic acidosis in rumen. Ruminal metataxonomic and fermentation characteristics analyses were conducted to evaluate the effect of different buffering capacities on in vitro and in vivo experiments in high-concentrate fed Hanwoo steers. Results: Results revealed that BC0.9% and BC0.5% had similar and significant effect (P < 0.05) on in vitro ruminal fermentation at 3 to 24 h incubation. Both BC0.9% and BC0.5% had significantly highest (P < 0.05) buffering capacity, pH, and ammonia-nitrogen (NH3-N) than BC0.3% and CON at 24 h of incubation. Individual and total volatile fatty acids (VFA) were significantly lowest in CON. Increasing buffering capacity concentration showed linear effect on pH at 6 to 24 h while total gas and NH3-N at 3 and 12 h. Phylum Bacteroidetes dominated all treatments but a higher abundance of Firmicutes in BC0.5% than others. Ruminoccocus bromii and Succiniclasticum ruminis were dominant in BC0.5% and Bacteroides massiliensis in BC0.3%. The normalized data of relative abundance of observed OTUs’ representative families have grouped the CON with BC0.3% in the same cluster, whereas BC0.5% and BC0.9% were clustered separately which indicates the effect of varying buffering capacity of buffer agents. Principal coordinate analysis (PCoA) on unweighted UniFrac distances revealed close similarity of bacterial community structures within and between treatments and control, in which BC0.9% and BC0.3% groups showed dispersed community distribution. Conclusion: Our findings showed that increasing buffering capacity enhances rumen fermentation parameters and affects rumen microbiome by altering bacterial community through distinct structure between high and low buffering capacity, thus an important factor contributed to the prevention of ruminal acidosis during a high-concentrate diet.


1982 ◽  
Vol 54 (2) ◽  
pp. 127-135
Author(s):  
Liisa Syrjälä-Qvist

The criteria used in comparing the utilization of grass silage by reindeer and sheep were rumen pH, ammonia, volatile fatty acids (VFA) and microbes. Rumen samples were taken before feeding, and 2 ½ and 5 ½ hours after the beginning of feeding. Rumen fermentation was lower in the reindeer than in the sheep and differed less between the three sampling times. In the reindeer/the pH of the rumen fluid averaged 6.94 and in the sheep 6.61. The average amounts of NH3—N were 17.0 and 24.2 mg/100 ml rumen fluid and those of total VFA 8.46 and 10.90 mmoles/100ml rumen fluid, respectively. The proportion of acetic acid in the VFA in the reindeer was 75.3 molar % and in the sheep 66.0 molar %, the corresponding values for propionic acid being 18.5 and 22.0 molar % and for butytic acid 4.2 and 8.8 molar %. The number of rumen ciliates in the reindeer averaged 87/mm3 rumen contents and in the sheep 314/ mm3. The numbers of bacteria were 16.0 X 106/mm3, respectively. The proportion of the total microbe mass in the reindeer rumen contents was 1.8 % and in the sheep 2.4 %. The proportions of bacteria in this mass were 87 % and 70 %, respectively. The differences between the reindeer and sheep in the rumen fermentation results and in the numbers of rumen microbiota were nearly all statistically significant (P


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12447
Author(s):  
Alaa Emara Rabee ◽  
Khalid Z. Kewan ◽  
Ebrahim A. Sabra ◽  
Hassan M. El Shaer ◽  
Mebarek Lamara

Rumen bacteria make the greatest contribution to rumen fermentation that enables the host animal to utilize the ingested feeds. Agro-industrial byproducts (AIP) such as olive cake (OC) and date palm byproducts (discarded dates (DD), and date palm fronds (DPF)) represent a practical solution to the deficiency in common feed resources. In this study, thirty-six growing Barki lambs were divided into three groups to evaluate the effect of untraditional diets including the AIP on the growth performance. Subsequently, nine adult Barki rams were used to evaluate the effect of experimental diets on rumen fermentation and rumen bacteria. Three rations were used: common concentrate mixture (S1), common untraditional concentrate mixture including OC and DD (S2), and the same concentrate mixture in S2 supplemented with roughage as DPF enriched with 15% molasses (S3). The animals in S2 group showed higher dry matter intake (DMI) and lower relative growth rate (RGR) as compared to the animals in S1 group. However, the animals in S3 group were the lowest in DMI but achieved RGR by about 87.6% of that in the S1 group. Rumen pH, acetic and butyric acids were more prevalent in animals of S3 group and rumen ammonia (NH3-N), total volatile fatty acids (TVFA), propionic acid were higher in S1. Rumen enzymes activities were higher in S1 group followed by S3 and S2. The bacterial population was more prevalent in S1 and microbial diversity was higher in the S3 group. Principal coordinate analysis revealed clusters associated with diet type and the relative abundance of bacteria varied between sheep groups. The bacterial community was dominated by phylum Bacteroidetes and Firmicutes; whereas, Prevotella, Ruminococcus, and Butyrivibrio were the dominant genera. Results indicate that diet S3 supplemented by OC, DD, and DPF could replace the conventional feed mixture.


2019 ◽  
Vol 99 (2) ◽  
pp. 260-267
Author(s):  
Germán Buendía-Rodríguez ◽  
Laura H. Vallejo ◽  
Mona M.Y. Elghandour ◽  
Abdelfattah Z.M. Salem ◽  
Victor Mlambo

This study examines the effect of including graded levels of safflower meal (SM) [0 (SM0), 150 (SM15), or 200 g kg−1 dry matter (SM20)] in diets of Katahdin–Pelibuey lambs on ruminal fermentation, growth performance, and meat quality. Experimental diets were randomly allocated to 24 lambs (29.25 ± 0.55 kg) in a 60 d feeding trial. On day 30, rumen fluid was collected from each sheep at 0, 3, and 6 h after morning feeding to measure pH, ammonia, and volatile fatty acids. Feed intake, nutrient digestibility, growth performance, carcass characteristics, and meat quality were also measured. Feed intake, ruminal volatile fatty acids concentration, dry matter, and crude protein digestibility were not affected (P > 0.05) by diets. Lambs fed on SM15 had higher (P < 0.05) ruminal pH at 3 and 6 h post feeding compared with those on SM0 and SM20. Inclusion of SM increased (P < 0.05) ruminal ammonia concentration at 3 and 6 h post feeding; however, daily gain decreased with increasing levels of SM. Diets did not affect (P > 0.05) carcass and meat quality traits. Feeding SM-containing diets resulted in similar feed utilization, carcass characteristics, and meat quality to the control diet while improving ruminal fermentation parameters.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1123 ◽  
Author(s):  
Haibo Wang ◽  
Hang Li ◽  
Fei Wu ◽  
Xinjun Qiu ◽  
Zhantao Yu ◽  
...  

The objective of this study was to evaluate the effects of dietary energy levels on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Thirty-six Holstein-Friesians bulls (17 months of age) were divided into a 3 × 3 factorial experiment with three energy levels (LE, ME and HE; metabolizable energy is 10.12, 10.90 and 11.68 MJ/kg, respectively) of diets, and three slaughter ages (20, 23 and 26 months). Results indicated that bulls fed with ME and HE diets had higher dry matter intake, average daily gain, and dressing percentage at 23 or 26 months of age. The ME and HE diets also reduced bacterial diversity, altered relative abundances of bacteria and produced lower concentrations of acetate, but higher butyrate and valerate concentrations in rumen fluid. Increasing in dietary energy and slaughter age increased the intramuscular fat (IMF) and water holding capacity. In summary, Holstein-Friesians bulls fed with ME and HE diets, slaughtered at 23 and 26 months of age could be a good choice to produce beef with high IMF. Slaughter age may have less influence than dietary energy in altering fermentation by increasing amylolytic bacteria and decreasing cellulolytic bacteria, and thus, further affecting meat quality.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 761
Author(s):  
Olinda Guerreiro ◽  
Susana P. Alves ◽  
Mónica Costa ◽  
Maria F. Duarte ◽  
Eliana Jerónimo ◽  
...  

Cistus ladanifer (rockrose) is a perennial shrub quite abundant in the Mediterranean region, and it is a rich source in secondary compounds such as condensed tannins (CTs). Condensed tannins from C. ladanifer were able to change the ruminal biohydrogenation (BH), increasing the t11–18:1 and c9,t11–18:2 production. However, the adequate conditions of the C. ladanifer CTs used to optimize the production of t11–18:1 and c9,t11–18:2 is not yet known. Thus, we tested the effect of increasing the doses of C. ladanifer CT extract (0, 25, 50, 75 and 100 g/kg dry matter (DM)) on in vitro rumen BH. Five in vitro batch incubations replicates were conducted using an oil supplemented high-concentrate substrate, incubated for 24 h with 6 mL of buffered ruminal fluid. Volatile fatty acids (VFAs) and long chain fatty acids (FA) were analyzed at 0 h and 24 h, and BH of c9–18:1, c9, c12–18:2 and c9, c12, c15–18:3, and BH products yield were computed. Increasing doses of C. ladanifer CTs led to a moderate linear decrease (p < 0.001) of the VFA production (a reduction of 27% with the highest dose compared to control). The disappearance of c9–18:1 and c9,c12–18:2 as well as the production of t11–18:1 and c9, t11:18:2 was not affected by increasing doses of C. ladanifer CTs, and only the disappearance of c9, c12, c15–18:3 suffered a mild linear decrease (a reduction of 24% with the highest dose compared to control). Nevertheless, increasing the C. ladanifer CT dose led to a strong depression of microbial odd and branched fatty acids and of dimethyl acetals production (less than 65% with the highest dose compared to control), which indicates that microbial growth was more inhibited than fermentative and biohydrogenation activities, in a possible adaptative response of microbial population to stress induced to CTs and polyunsaturated fatty acids. The ability of C. ladanifer to modulate the ruminal BH was not verified in the current in vitro experimental conditions, emphasizing the inconsistent BH response to CTs and highlighting the need to continue seeking the optimal conditions for using CTs to improve the fatty acid profile of ruminant fat.


1994 ◽  
Vol 59 (2) ◽  
pp. 217-222 ◽  
Author(s):  
M. D. Carro ◽  
A. R. Mantecón ◽  
I. A. Wright ◽  
I. J. Gordon

AbstractEffects of time of supplementation on forage intake, nutrient apparent digestibility and rumen fermentation were studied with 12 mature castrated male sheep (wethers) offered grass hay from 16.30 h to 09.30 h and supplemented with a cereal-based concentrate given at either 09.30 or 16.00 h. Voluntary intake of hay organic matter (OM) was decreased by feeding the concentrate (P< 0·01). Offering concentrate at 09.30 h after hay was available, increased intake of hay and total OM compared with offering it at 16.00 h before hay was available (P< 0·05). Daily pattern of hay intake was not changed when concentrate was offered at 09.30 h compared with feeding hay alone, but concentrate given at 16.00 h resulted in a lower hay intake between 16.30 and 18.00 h. Sheep offered concentrate at 09.30 h had higher rumen ammonia levels than those offered concentrate at 16.00 h, but there were no differences in the apparent digestibility of the nutrients, rumen pH and molar proportions of the main volatile fatty acids. There were also no differences between groups in the blood plasma concentrations of 3-hydroxybutyrate (30HB), nonesterified fatty acids (NEFA) and glucose. It is concluded that feeding supplement after rather than before a period of intake of forage or a bout of grazing may offer a means of minimizing reduction of forage intake as a consequence of feeding concentrate.


Sign in / Sign up

Export Citation Format

Share Document