scholarly journals Response of Sugarcane Rhizosphere Bacterial Community to Drought Stress

2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Liu ◽  
Xiaowen Zhao ◽  
Yue Liu ◽  
Sasa Xie ◽  
Yuanjun Xing ◽  
...  

Sugarcane is an important sugar and energy crop, and its yield is greatly affected by drought. Although a large number of studies have shown that rhizosphere microorganisms can help improve the adaptability of plants to biotic or abiotic stresses, there is a lack of studies on the adaptability of sugarcane rhizosphere microbial communities to host plants. Therefore, we conducted drought stress treatment and normal irrigation treatment on three sugarcane varieties GT21, GT31, and GT42 widely cultivated in Guangxi. Using 16S rDNA sequencing technology to analyze the changes in abundance of the sugarcane rhizosphere bacterial community under different treatments, combined with the determination of soil enzyme activity, soil nutrient content, and sugarcane physiological characteristics, we explored the sugarcane rhizosphere bacterial community response to drought stress. In addition, we used the structural equation model to verify the response path of sugarcane rhizosphere bacteria. The results show that the bacterial community structure in the rhizosphere of sugarcane is stable under normal water conditions. The change in the bacterial community structure under drought stress has a 25.2% correlation with the drought adaptability of sugarcane, but the correlation with drought stress is as high as 42.17%. The changes in abundance of rhizosphere bacteria under drought stress are mainly concentrated in the phylum Rhizobiales and Streptomycetales. This change is directly related to the physiological state of the host plant under drought stress, soil available phosphorus, soil urease and soil acid protease. We investigated the response species of rhizosphere microorganisms and their response pathways under drought stress, providing a scientific basis for rhizosphere microorganisms to assist host plants to improve drought adaptability.

Author(s):  
Yuanyuan Shen ◽  
Yu Ji ◽  
Chunrong Li ◽  
Pingping Luo ◽  
Wenke Wang ◽  
...  

Increased exploitation and use of petroleum resources is leading to increased risk of petroleum contamination of soil and groundwater. Although phytoremediation is a widely-used and cost-effective method for rehabilitating soils polluted by petroleum, bacterial community structure and diversity in soils undergoing phytoremediation is poorly understood. We investigate bacterial community response to phytoremediation in two distinct petroleum-contaminated soils (add prepared petroleum-contaminated soils) from northwest China, Weihe Terrace soil and silty loam from loess tableland. High-throughput sequencing technology was used to compare the bacterial communities in 24 different samples, yielding 18,670 operational taxonomic units (OTUs). The dominant bacterial groups, Proteobacteria (31.92%), Actinobacteria (16.67%), Acidobacteria (13.29%) and Bacteroidetes (6.58%), increased with increasing petroleum concentration from 3000 mg/kg–10,000 mg/kg, while Crenarchaeota (13.58%) and Chloroflexi (4.7%) decreased. At the order level, RB41, Actinomycetales, Cytophagales, envOPS12, Rhodospirillales, MND1 and Xanthomonadales, except Nitrososphaerales, were dominant in Weihe Terrace soil. Bacterial community structure and diversity in the two soils were significantly different at similar petroleum concentrations. In addition, the dominant genera were affected by available nitrogen, which is strongly associated with the plants used for remediation. Overall, the bacterial community structure and diversity were markedly different in the two soils, depending on the species of plants used and the petroleum concentration.


Author(s):  
Zhang tao ◽  
Wang Zhongke ◽  
Lv Xinhua ◽  
Dang Hanli ◽  
Zhuang Li

Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, Ferula sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (Slope position and soil depth) and Found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in Ferula sinkiangensi s rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in Ferula sinkiangensis . In addition, Soil physicochemical factors jointly explained 24.28% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tao Zhang ◽  
Zhongke Wang ◽  
Xinhua Lv ◽  
Hanli Dang ◽  
Li Zhuang

Abstract Ferula sinkiangensis (F. sinkiangensis) is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, F. sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of F. sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and changed trend of F. sinkiangensis rhizosphere bacterial community diversity and abundance on slope position and soil depth and found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in F. sinkiangensis rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in F. sinkiangensis. In addition, Soil physicochemical factors jointly explained 24.28% of variation in F. sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of F. sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


2021 ◽  
Vol 13 (23) ◽  
pp. 13244
Author(s):  
Qing Chen ◽  
Honghu Zeng ◽  
Yanpeng Liang ◽  
Litang Qin ◽  
Guangsheng Peng ◽  
...  

This study aimed to investigate the removal of β-hexachlorocyclohexane (β-HCH) at realistic concentration levels (10 µg/L) in different plant species in constructed wetlands (Acorus calamus, Canna indica, Thalia dealbata, and Pontederia cordata) and the structure of the rhizosphere microbial community response of each group during summer and winter. Results showed that all groups of constructed wetlands had very good decontamination efficiency against β-HCH in water (90.86–98.17%). The species that most efficiently purified β-HCH in water was A. calamus in summer (98.17%) and C. indica in winter (96.64%). Substrate sorption was found to be the major pathway for β-HCH removal from water in the constructed wetlands. The ability of the wetland plants to absorb and purify β-HCH was limited, and C. indica had the strongest absorptive capacity among the four plant species. The mean β-HCH removal from the matrix of the planted plants increased by 5.8% compared with that of the control treatment (unplanted plants). The average β-HCH content in the plant rhizosphere substrate was 4.15 µg/kg lower than that in the non-rhizosphere substrate. High-throughput sequencing analysis revealed significant differences (P < 0.05) in the Chao1 and ACE indices of microbes in the substrate of four wetlands during summer and winter. At the genus level, the constructed wetlands with vegetation plantations showed higher microbial abundance than the constructed wetlands without vegetation plantations. In winter, the bacterial community structure of each constructed wetland was quite different, but no dominant flora in the bacterial community structure obviously changed. In summer, the bacterial community structure at the same stage was relatively small. The abundance of Actinobacteria and Sphingomonas remarkably increased over time in summer.


Author(s):  
Zhang tao ◽  
Wang Zhongke ◽  
Lv Xinhua ◽  
Dang Hanli ◽  
Zhuang Li

Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, Ferula sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (Slope position and soil depth) and Found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in Ferula sinkiangensi s rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in Ferula sinkiangensis . In addition, Soil physicochemical factors jointly explained 24.28% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


Sign in / Sign up

Export Citation Format

Share Document