scholarly journals Biosynthetic Pathway and the Potential Role of Melatonin at Different Abiotic Stressors and Developmental Stages in Tolypocladium guangdongense

2021 ◽  
Vol 12 ◽  
Author(s):  
Gangzheng Wang ◽  
Xianglian Chen ◽  
Chenghua Zhang ◽  
Min Li ◽  
Chengyuan Sun ◽  
...  

Melatonin, a bioactive compound and an important signaling molecule produced in plants and animals, is involved in many biological processes. However, its function and synthetic pathways in fungi are poorly understood. Here, the samples from Tolypocladium guangdongense, a highly valued edible fungus with functional food properties, were collected under different experimental conditions to quantify the levels of melatonin and its intermediates. The results showed that the intracellular melatonin content was markedly improved by Congo red (CR), cold, and heat stresses; the levels of intracellular melatonin and its intermediates increased at the primordial (P) and fruiting body (FB) stages. However, the levels of most intermediates exhibited a notable decrease under CR stress. Several genes related to melatonin synthesis, excluding AADC (aromatic-L-amino-acid decarboxylase), were markedly upregulated at an early stage of CR stress but downregulated later. Compared to the mycelial stage, those genes were significantly upregulated at the P and FB stages. Additionally, exogenous melatonin promoted resistance to several abiotic stressors and P formation in T. guangdongense. This study is the first to report melatonin biosynthesis pathway in macro-fungi. Our results should help in studying the diversity of melatonin function and melatonin-synthesis pathways and provide a new viewpoint for melatonin applications in the edible-medicinal fungus.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lian Chee Foong ◽  
Jian Yi Chai ◽  
Anthony Siong Hock Ho ◽  
Brandon Pei Hui Yeo ◽  
Yang Mooi Lim ◽  
...  

Abstract Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Carlo Fusco ◽  
◽  
Vincenzo Leuzzi ◽  
Pasquale Striano ◽  
Roberta Battini ◽  
...  

Abstract Background Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare and underdiagnosed neurometabolic disorder resulting in a complex neurological and non-neurological phenotype, posing diagnostic challenges resulting in diagnostic delay. Due to the low number of patients, gathering high-quality scientific evidence on diagnosis and treatment is difficult. Additionally, based on the estimated prevalence, the number of undiagnosed patients is likely to be high. Methods Italian experts in AADC deficiency formed a steering committee to engage clinicians in a modified Delphi consensus to promote discussion, and support research, dissemination and awareness on this disorder. Five experts in the field elaborated six main topics, each subdivided into 4 statements and invited 13 clinicians to give their anonymous feedback. Results 100% of the statements were answered and a consensus was reached at the first round. This enabled the steering committee to acknowledge high rates of agreement between experts on clinical presentation, phenotypes, diagnostic work-up and treatment strategies. A research gap was identified in the lack of standardized cognitive and motor outcome data. The need for setting up an Italian working group and a patients’ association, together with the dissemination of knowledge inside and outside scientific societies in multiple medical disciplines were recognized as critical lines of intervention. Conclusions The panel expressed consensus with high rates of agreement on a series of statements paving the way to disseminate clear messages concerning disease presentation, diagnosis and treatment and strategic interventions to disseminate knowledge at different levels. Future lines of research were also identified.


1978 ◽  
Vol 235 (1) ◽  
pp. R41-R47
Author(s):  
M. T. Lin ◽  
I. H. Pang ◽  
S. I. Chern ◽  
W. Y. Chia

Elevating serotonin (5-HT) contents in brain with 5-hydroxytryptophan (5-HTP) reduced rectal temperature (Tre) in rabbits after peripheral decarboxylase inhibition with the aromatic-L-amino-acid decarboxylase inhibitor R04-4602 at two ambient temperatures (Ta), 2 and 22 degrees C. The hypothermia was brought about by both an increase in respiratory evaporative heat loss (Eres) and a decrease in metabolic rate (MR) in the cold. At a Ta of 22 degrees C, the hypothermia was achieved solely due to an increase in heat loss. Depleting brain contents of 5-HT with intraventricular, 5,7-dihydroxytryptamine (5,7-DHT) produced an increased Eres and ear blood flow even at Ta of 2 degrees C. Also, MR increased at all but the Ta of 32 degrees C. However, depleting the central and peripheral contents of 5-HT with p-chlorophenylalanine (pCPA) produced lower MR accompanied by lower Eres in the cold compared to the untreated control. Both groups of pCPA-treated and 5,7-DHT-treated animals maintained their Tre within normal limits. The data suggest that changes in 5-HT content in brain affects the MR of rabbits in the cold. Elevating brain content of 5-HT tends to depress the MR response to cold, while depleting brain content of 5-HT tends to enhance the MR response to cold.


Sign in / Sign up

Export Citation Format

Share Document