scholarly journals Heterotrophic Bacterioplankton Growth and Physiological Properties in Red Sea Tropical Shallow Ecosystems With Different Dissolved Organic Matter Sources

2022 ◽  
Vol 12 ◽  
Author(s):  
Luis Silva ◽  
Maria Ll. Calleja ◽  
Tamara M. Huete-Stauffer ◽  
Snjezana Ivetic ◽  
Mohd I. Ansari ◽  
...  

Despite the key role of heterotrophic bacterioplankton in the biogeochemistry of tropical coastal waters, their dynamics have been poorly investigated in relation to the different dissolved organic matter (DOM) pools usually available. In this study we conducted four seasonal incubations of unfiltered and predator-free seawater (Community and Filtered treatment, respectively) at three Red Sea coastal sites characterized by different dominant DOM sources: Seagrass, Mangrove, and Phytoplankton. Bacterial abundance, growth and physiological status were assessed by flow cytometry and community composition by 16S rRNA gene amplicons. The Seagrass site showed the highest initial abundances (6.93 ± 0.30 × 105 cells mL–1), coincident with maximum DOC concentrations (>100 μmol C L–1), while growth rates peaked at the Mangrove site (1.11 ± 0.09 d–1) and were consistently higher in the Filtered treatment. The ratio between the Filtered and Community maximum bacterial abundance (a proxy for top-down control by protistan grazers) showed minimum values at the Seagrass site (1.05 ± 0.05) and maximum at the Phytoplankton site (1.24 ± 0.30), suggesting protistan grazing was higher in open waters, especially in the first half of the year. Since the Mangrove and Seagrass sites shared a similar bacterial diversity, the unexpected lack of bacterial response to predators removal at the latter site should be explained by differences in DOM characteristics. Nitrogen-rich DOM and fluorescent protein-like components were significantly associated with enhanced specific growth rates along the inshore-offshore gradient. Our study confirms the hypotheses that top–down factors control bacterial standing stocks while specific growth rates are bottom-up controlled in representative Red Sea shallow, oligotrophic ecosystems.

2021 ◽  
Vol 8 ◽  
Author(s):  
Najwa Al-Otaibi ◽  
Francisca C. García ◽  
Xosé Anxelu G. Morán

The diel variability of the abundance and cell size of picoplanktonic groups in the central Red Sea was monitored every 2 h in situ on 4 occasions (once per season) from 2015 to 2016. We distinguished Prochlorococcus, low (LF-Syn) and high (HF-Syn) fluorescence Synechococcus, small (Speuk) and large (Lpeuk) picoeukaryotes and two groups of heterotrophic prokaryotes of low (LNA) and high (HNA) nucleic acid content. The diel variability in abundance was less marked than in cell size and more apparent in autotrophs than heterotrophs. Specific growth rates were estimated by an empirical relationship from measurements obtained in bottle incubations of surface and deep samples collected in the winter compared with in situ variations in cell size over 24 h. Autotrophic picoplankton groups generally grew faster (0.23–0.77 d–1) than heterotrophic prokaryotes (0.12–0.50 d–1). Surface to 100 m depth-weighted specific growth rates displayed a clear seasonal pattern for Prochlorococcus, with maxima in winter (0.77 ± 0.07 d–1) and minima in fall (0.52 ± 0.07 d–1). The two groups of Synechococcus peaked in spring, with slightly higher growth rates of LF-Syn (0.57 ± 0.04 d–1) than HF-Syn (0.43 ± 0.04 d–1). Speuk and Lpeuk showed different seasonal patterns, with lower values of the former (0.27 ± 0.02 and 0.37 ± 0.04 d–1, respectively). HNA consistently outgrew LNA heterotrophic prokaryotes, with a higher growth in the epipelagic (0–200 m, 0.36 ± 0.03 d–1) than in the mesopelagic (200–700 m, 0.26 ± 0.03 d–1), while no differences were found for LNA cells (0.19 ± 0.03 d–1 and 0.17 ± 0.02 d–1, respectively). With all data pooled, the mean diel abundances of autotrophic picoplankton in the upper epipelagic and of HNA cells in the epipelagic and mesopelagic layers were significantly correlated with the specific growth rates estimated from cell size variations. Our high-resolution sampling dataset suggests that changes in growth rates underlie the noticeable seasonality of picoplankton recently described in these tropical waters.


2005 ◽  
Vol 71 (6) ◽  
pp. 2979-2986 ◽  
Author(s):  
Rex R. Malmstrom ◽  
Matthew T. Cottrell ◽  
Hila Elifantz ◽  
David L. Kirchman

ABSTRACT Members of the SAR11 clade often dominate the composition of marine microbial communities, yet their contribution to biomass production and the flux of dissolved organic matter (DOM) is unclear. In addition, little is known about the specific components of the DOM pool utilized by SAR11 bacteria. To better understand the role of SAR11 bacteria in the flux of DOM, we examined the assimilation of leucine (a measure of biomass production), as well as free amino acids, protein, and glucose, by SAR11 bacteria in the Northwest Atlantic Ocean. We found that when SAR11 bacteria were >25% of total prokaryotes, they accounted for about 30 to 50% of leucine incorporation, suggesting that SAR11 bacteria were major contributors to bacterial biomass production and the DOM flux. Specific growth rates of SAR11 bacteria either equaled or exceeded growth rates for the total prokaryotic community. In addition, SAR11 bacteria were typically responsible for a greater portion of amino acid assimilation (34 to 61%) and glucose assimilation (45 to 57%) than of protein assimilation (≤34%). These data suggest that SAR11 bacteria do not utilize various components of the DOM pool equally and may be more important to the flux of low-molecular-weight monomers than to that of high-molecular-weight polymers.


2001 ◽  
Vol 58 (2) ◽  
pp. 386-393 ◽  
Author(s):  
John A Sweka ◽  
Kyle J Hartman

Brook trout (Salvelinus fontinalis) were held in an artificial stream to observe the influence of turbidity on mean daily consumption and specific growth rates. Treatment turbidity levels ranged from clear (<3.0 nephelometric turbidity units (NTU)) to very turbid water (> 40 NTU). Observed mean daily specific consumption rates were standardized to the mean weight of all brook trout tested. Turbidity had no significant effect on mean daily consumption, but specific growth rates decreased significantly as turbidity increased. Brook trout in turbid water became more active and switched foraging strategies from drift feeding to active searching. This switch was energetically costly and resulted in lower specific growth rates in turbid water as compared with clear water. Bioenergetics simulations were run to compare observed growth with that predicted by the model. Observed growth values fell below those predicted by the model and the difference increased as turbidity increased. Abiotic factors, such as turbidity, which bring about changes in the activity rates of fish, can have implications for the accuracy of predicted growth by bioenergetics models.


Copeia ◽  
1992 ◽  
Vol 1992 (4) ◽  
pp. 1098 ◽  
Author(s):  
Alan B. Bolten ◽  
Karen A. Bjorndal ◽  
Janice S. Grumbles ◽  
David W. Owens

2014 ◽  
Vol 17 (2) ◽  
pp. 346-363 ◽  
Author(s):  
Wout Overkamp ◽  
Onur Ercan ◽  
Martijn Herber ◽  
Antonius J. A. van Maris ◽  
Michiel Kleerebezem ◽  
...  

2021 ◽  
Author(s):  
Sevtap Tırınk ◽  
Alper Nuhoğlu ◽  
Sinan Kul

Abstract This study encompasses investigation of treatment of pistachio processing industry wastewaters in a batch reactor under aerobic conditions, calculation of kinetic parameters and comparison of different inhibition models. The mixed microorganism culture used in the study was adapted to pistachio processing industry wastewaters for nearly one month and then concentrations from 50-1000 mg L− 1 of pistachio processing industry wastewaters were added to the medium and treatment was investigated in batch experiments. The Andrews, Han-Levenspiel, Luong and Aiba biokinetic equations were chosen for the correlations between the concentration of pistachio processing industry wastewaters and specific growth rates, and the kinetic parameters in these biokinetic equations were calculated. The µmax, Ks and Ki parameters, included in the Aiba biokinetic equation providing best fit among the other equations, had values calculated as 0.25 h− 1, 19 mg L− 1, and 516 mg L− 1, respectively.


2012 ◽  
Vol 78 (19) ◽  
pp. 7132-7136 ◽  
Author(s):  
Christian Dusny ◽  
Frederik Sven Ole Fritzsch ◽  
Oliver Frick ◽  
Andreas Schmid

ABSTRACTSingularized cells ofPichia pastoris,Hansenula polymorpha, andCorynebacterium glutamicumdisplayed specific growth rates under chemically and physically constant conditions that were consistently higher than those obtained in populations. This highlights the importance of single-cell analyses by uncoupling physiology and the extracellular environment, which is now possible using the Envirostat 2.0 concept.


2013 ◽  
Vol 10 (8) ◽  
pp. 5267-5280 ◽  
Author(s):  
F. H. Chang ◽  
E. C. Marquis ◽  
C. W. Chang ◽  
G. C. Gong ◽  
C. H. Hsieh

Abstract. Allometric scaling of body size versus growth rate and mortality has been suggested to be a universal macroecological pattern, as described by the metabolic theory of ecology (MTE). However, whether such scaling generally holds in natural assemblages remains debated. Here, we test the hypothesis that the size-specific growth rate and grazing mortality scale with the body size with an exponent of −1/4 after temperature correction, as MTE predicts. To do so, we couple a dilution experiment with the FlowCAM imaging system to obtain size-specific growth rates and grazing mortality of natural microphytoplankton assemblages in the East China Sea. This novel approach allows us to achieve highly resolved size-specific measurements that would be very difficult to obtain in traditional size-fractionated measurements using filters. Our results do not support the MTE prediction. On average, the size-specific growth rates and grazing mortality scale almost isometrically with body size (with scaling exponent ∼0.1). However, this finding contains high uncertainty, as the size-scaling exponent varies substantially among assemblages. The fact that size-scaling exponent varies among assemblages prompts us to further investigate how the variation of size-specific growth rate and grazing mortality can interact to determine the microphytoplankton size structure, described by normalized biomass size spectrum (NBSS), among assemblages. We test whether the variation of microphytoplankton NBSS slopes is determined by (1) differential grazing mortality of small versus large individuals, (2) differential growth rate of small versus large individuals, or (3) combinations of these scenarios. Our results indicate that the ratio of the grazing mortality of the large size category to that of the small size category best explains the variation of NBSS slopes across environments, suggesting that higher grazing mortality of large microphytoplankton may release the small phytoplankton from grazing, which in turn leads to a steeper NBSS slope. This study contributes to understanding the relative importance of bottom-up versus top-down control in shaping microphytoplankton size structure.


Sign in / Sign up

Export Citation Format

Share Document