scholarly journals Genome Characteristics Reveal the Biocontrol Potential of Actinobacteria Isolated From Sugarcane Rhizosphere

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhen Wang ◽  
Manoj Kumar Solanki ◽  
Zhuo-Xin Yu ◽  
Muhammad Anas ◽  
Deng-Feng Dong ◽  
...  

To understand the beneficial interaction of sugarcane rhizosphere actinobacteria in promoting plant growth and managing plant diseases, this study investigated the potential role of sugarcane rhizospheric actinobacteria in promoting plant growth and antagonizing plant pathogens. We isolated 58 actinobacteria from the sugarcane rhizosphere, conducted plant growth-promoting (PGP) characteristics research, and tested the pathogenic fungi in vitro. Results showed that BTU6 (Streptomyces griseorubiginosus), the most representative strain, regulates plant defense enzyme activity and significantly enhances sugarcane smut resistance by regulating stress resistance-related enzyme (substances (POD, PAL, PPO, TP) in sugarcane) activity in sugarcane. The genomic evaluation indicated that BTU6 has the ability to biosynthesize chitinase, β-1,3-glucanase, and various secondary metabolites and plays an essential role in the growth of sugarcane plants under biotic stress. Potential mechanisms of the strain in improving the disease resistance of sugarcane plants and its potential in biodegrading exogenous chemicals were also revealed. This study showed the importance of sugarcane rhizosphere actinobacteria in microbial ecology and plant growth promotion.

Author(s):  
Jitendra Mishra ◽  
Malvika Rajnandani ◽  
Naveen Kumar Arora

In India, maize is the third most important food crop after rice and wheat but the productivity is severely affected as the plant is also prone to a number of diseases caused by fungi and bacteria. Ear rot caused by <italic>Fusarium moniliforme</italic> is one of the economically important soil and seed borne disease of maize and not easily controlled by chemical methods. Antagonistic bacteria may constitute an alternative for improving the crop productivity. In this study 13 fluorescent pseudomonads were isolated from rhizosphere of different plants and screened for plant growth promoting activities and biocontrol potential against <italic>F. moniliforme</italic> ITCC No. 2193. Among them a potential isolate, W3Gr-6(b) not only inhibited growth of <italic>F. moniliforme</italic> under in-vitro conditions but was also capable of maize growth promotion in presence of pathogen.


Author(s):  
Thanh Nguyen Chu ◽  
Nhi Yen Nguyen ◽  
Diep Ngoc Dao ◽  
Bao Thi Hoai Tran ◽  
Minh Thi Thanh Hoang ◽  
...  

Plant growth promoting rhizobacteria (PGPR) are free-living soil bacteria (rhizosphere bacteria), rhizoplane bacteria or endophytic bacteria that may promote plant growth and suppress plant diseases. The aim of this study is to evaluate effects of 2 rhizobacteria strains belonging to the genus Pseudomonas isolated from maize rhizosphere on the plant growth promotion. The in vitro tests showed that both of strain could fix nitrogen, solubilize phosphate, produced phytohormones (IAA and GAs), and improved the germination and growth of Arabidopsis thaliana. Under the greenhouse condition, growth parameters of bacteria inoculated maizes (fresh weight of shoot, dry weight of root, chlorophyll content) were also increased significantly than those of uninoculated ones. Our results reported 2 promising bacteria strain candidates and revealed their potential as a biological agent for eco-friendly agricultural practices.


2019 ◽  
Vol 6 (2) ◽  
pp. 28-36
Author(s):  
Kannan K ◽  
Rajesh Kannan V ◽  
Shibinaya N ◽  
Umamaheswari M

Rhizobium known for its nitrogen fixation and plant growth promoting capabilities which is symbiotically associative with legume plants. So forth Rhizobium used as biofertilizers in the agriculture. The ability of controlling plant diseases by using Rhizobium produced secondary metabolites as biocontrol agent is the current open area in the agriculture research. The nodules inhabited Rhizobium strains were selected for the production of secondary metabolites and the ability of controlling Fusarium was evaluated preliminarily by agar well diffusion assay. Four different Rhizobium were isolated, among that S1 cannot showed any inhibition, whereas S2, S3 and S4 were showed 11, 15 and 19mm of inhibition respectively.Among that S4 selected further and DNA isolated and identified using 16S rDNA gene sequencing. The sequences were submitted in genbank and got accession number MH165175. This organism was found to be Bradyrhizobium japonicum and mass cultured for compound extraction using organic solvents. The extracted secondary metabolite were purified using different chromatography techniques. The purified fractions were analyzed for the biocontrol of Fusarium sp., isolated from infected cowpea and results showed fraction 4showed 21mm zone of inhibition. Further the selected fractions were analytically characterized to know the compounds present. Finally the purified compounds were evaluated for its biocontrol behavior against Fusaium sp., and plant growth promotion in in vitro conditions.


2020 ◽  
Vol 8 (2) ◽  
pp. 153 ◽  
Author(s):  
Francesca Luziatelli ◽  
Anna Grazia Ficca ◽  
Mariateresa Cardarelli ◽  
Francesca Melini ◽  
Andrea Cavalieri ◽  
...  

Distinctive strains of Pantoea are used as soil inoculants for their ability to promote plant growth. Pantoea agglomerans strain C1, previously isolated from the phyllosphere of lettuce, can produce indole-3-acetic acid (IAA), solubilize phosphate, and inhibit plant pathogens, such as Erwinia amylovora. In this paper, the complete genome sequence of strain C1 is reported. In addition, experimental evidence is provided on how the strain tolerates arsenate As (V) up to 100 mM, and on how secreted metabolites like IAA and siderophores act as biostimulants in tomato cuttings. The strain has a circular chromosome and two prophages for a total genome of 4,846,925-bp, with a DNA G+C content of 55.2%. Genes related to plant growth promotion and biocontrol activity, such as those associated with IAA and spermidine synthesis, solubilization of inorganic phosphate, acquisition of ferrous iron, and production of volatile organic compounds, siderophores and GABA, were found in the genome of strain C1. Genome analysis also provided better understanding of the mechanisms underlying strain resistance to multiple toxic heavy metals and transmission of these genes by horizontal gene transfer. Findings suggested that strain C1 exhibits high biotechnological potential as plant growth-promoting bacterium in heavy metal polluted soils.


Author(s):  
Cun Yu ◽  
Ying Yao

Endophytic fungi were isolated from Phoebe bournei and their diversity and antimicrobial and plant growth-promoting activities were investigated. Of the 389 isolated endophytic fungi, 88.90% belonged to phylum Ascomycota and 11.10% to phylum Basidiomycota. The isolates were grouped into four taxonomic classes, 11 orders, 30 genera, and 45 species based on internal transcribed spacer sequencing and morphologic analysis. The host showed a strong affinity for the genera Diaporthe and Phyllosticta. The diversity of the fungi was highest in autumn, followed by spring and summer, and was lowest in winter. The fungi exhibited notable tissue specificity in P. bournei, and the species richness and diversity were highest in the root across all seasons. Five isolates showed antimicrobial activity against eight plant pathogens, and reduced the incidence of leaf spot disease in P. bournei. Additionally, 9 biocontrol isolates showed plant growth-promoting activity, with five significantly promoting P. bournei seedling growth. This is the first report on the endophytic fungi of P. bournei and their potential applicability to plant disease control and growth promotion.


2021 ◽  
Vol 12 (2) ◽  
pp. 1143-1150
Author(s):  
Lavanya J ◽  
Chanthosh S ◽  
Reshma Shrii ◽  
Viknesh V ◽  
Deepika S ◽  
...  

The study was aimed to find an alternate approach for chemicals used in agriculture to avoid microbial infections. Fungal pathogens cause different types of plant diseases and affect a majority of edible crops by destroying the tissues of the plant in a direct or indirect mechanism. So, an alternative approach led to the development of biocontrol agents using endophytic  bacteria. A total of 8 endophytic bacteria were isolated from the root, stem, and leaves of radish (Raphanus sativus). The antagonistic activity of these bacteria against the 2 isolated plant pathogenic fungi was determined in vitro. Two out of eight bacteria showed more than 50% inhibitory activity against one fungus, were further characterized using the 16s rRNA sequencing method. On the basis of the phylogenetic tree of the 16s rRNA method, the endophytic bacterial samples were identified as Tonsilliphilus suis  and Exiguobacterium aurantiacum against plant pathogenic Aspergillus flavus  isolated from Raphanus sativus, which makes them highly suitable as an alternative for chemical fertilizers to provide resistance to plant pathogenic fungi. The cell wall degrading activities such as protease activity, amylase activity, and plant growth-promoting properties such as Hydrogen cyanide (HCN), Indole acetic acid (IAA), ammonia production of these endophytic bacteria were evaluated. The results show that T. suis  is the most effective strain for radish growth development.


2005 ◽  
Vol 82 (3) ◽  
pp. 85-102 ◽  
Author(s):  
C.L. Doumbou ◽  
M.K. Hamby Salove ◽  
D.L. Crawford ◽  
C. Beaulieu

Actinomycetes represent a high proportion of the soil microbial biomass and have the capacity to produce a wide variety of antibiotics and of extracellular enzymes. Several strains of actinomycetes have been found to protect plants against plant diseases. This review focuses on the potential of actinomycetes as (a) source of agroactive compounds, (b) plant growth promoting organisms, and (c) biocontrol tools of plant diseases. This review also addresses examples of biological control of fungal and bacterial plant pathogens by actinomycetes species which have already reached the market or are likely to be exploited commercially within the next few years.


2019 ◽  
Author(s):  
Adel Hadj Brahim ◽  
Mouna Jlidi ◽  
Lobna Daoud ◽  
Manel Ben-Ali ◽  
Asmahen Akremi ◽  
...  

Abstract Background The use of bioinoculants based on plant growth-promoting bacteria (PGPB) to promote plant growth under biotic and abiotic stresses is in full expansion. To our knowledge much work has not been, thus far, done on seed-biopriming of durum wheat for tolerance to biotic and abiotic stresses. In the present work, we report detailed account of the effectiveness a potent bacterial strain with proven plant growth-promoting ability and antimicrobial activity. The isolate was selected following screening of several bacterial strains isolated from halophytes that grow in a coastal saline soil in Tunisia for their role in enhancing durum wheat tolerance to both salinity stress and head blight disease.Results Accordingly, Bacillus strains MA9, MA14, MA17 and MA19 were found to have PGPB characteristics as they produced indole-3-acetic acid, siderophores and lytic enzymes, fixed free atmospheric nitrogen, and solubilized inorganic phosphate, in vitro . The in vivo study that involved in planta inoculation assays under control (25 mM NaCl) and stress (125 mM NaCl) conditions indicated that all PGPB strains significantly ( P < 0.05) increased the total plant length, dry weight, root area, seed weight, nitrogen, protein and total mineral content. On the other hand, strain MA17 reduced Fusarium Head Blight (FHB) disease incidence in wheat explants by 64.5%, showing that the strain has antifungal activity as was also displayed by in vitro inhibition study.Conclusions Both in vitro and in vivo studies showed that MA9, MA14 MA9, MA14, MA17 and MA19 strains were able to play the PGPB role. Yet, biopriming with Bacillus strain MA17 offered the highest bioprotection against FHB, plant growth promotion, and salinity tolerance. Hence, the MA17 strain should further be evaluated under field condition and formulated for commercial production. Besides, the strain could further be evaluated for its potential role in bioprotection and growth promotion of other crop plants. We believe, the strain has potential to significantly contribute to wheat production in the arid and semi-arid region, especially the salt affected Middle Eastern Region, besides its potential role in improving wheat production under biotic and abiotic stresses in other parts of the world.


1998 ◽  
Vol 44 (6) ◽  
pp. 528-536 ◽  
Author(s):  
V K Sharma ◽  
J Nowak

The potential utilization of a plant growth promoting rhizobacterium, Pseudomonas sp. strain PsJN, to enhance the resistance of tomato transplants to verticillium wilt was investigated. Plant growth and disease development were tested on the disease-susceptible cultivar Bonny Best after Verticillium dahliae infection of tissue culture plantlets bacterized in vitro (by co-culturing with the bacterium) and seedlings bacterized in vivo (after 3 weeks growth in the greenhouse). Significant differences in both disease suppression and plant growth were obtained between in vitro bacterized and nonbacterized (control) plants. The degree of protection afforded by in vitro bacterization depended on the inoculum density of V. dahliae; the best and worst protection occurred at the lowest (103 conidia ·mL-1) and highest (106 conidia ·mL-1) levels, respectively. In contrast, the in vivo bacterized tomatoes did not show plant growth promotion when compared to the nonbacterized control plants. When challenged with Verticillium, significant growth differences between in vivo bacterized plants (26.8% for shoot height) and nonbacterized controls were only seen at the 3rd week after inoculation. Compared with the in vitro inoculation, there was no delay in the verticillium wilt symptom expression, even at the lowest concentration of V. dahliae, by in vivo PsJN inoculation. These results suggest that endophytic colonization of tomato tissues is required for the Verticillium-resistance responses. Plant growth promotion preceeds the disease-resistance responses and may depend on the colonization thresholds and subsequent sensitization of hosts.Key words: Pseudomonas sp., plant growth promoting rhizobacterium, Verticillium dahliae, tomato, colonization, plant growth promotion, disease suppression.


2020 ◽  
Vol 13 (1) ◽  
pp. 124
Author(s):  
Fuad Ameen ◽  
Ali A. Al-Homaidan

Municipal organic wastes could be exploited as fertilizers, having been given the ability to suppress plant diseases by the inoculation of the waste with certain fungi in the composting process. Our aim was to develop a novel fertilizer using composting in combination with fungi associated with mangrove forests. Nine fungal species were isolated from a mangrove forest habitat and screened for their activity against five phytopathogenic fungi, their plant-growth promotion ability, and their phosphate solubilization ability. Two fungal isolates, Penicillium vinaceum and Eupenicillium hirayama, were inoculated into organic waste before the composting experiment. After 90 days, the physico-chemical properties of the compost (color, moisture, pH, C:N ratio and cation exchange capacity (CEC)) indicated the maturity of the compost. The C:N ratio decreased and the CEC value increased most in the compost with the inoculum of both mangrove fungi. The vegetable plants grown in the mangrove fungi-inoculated composts had a higher vigor index than those grown in the control compost. The seeds collected from the plants grown in the fungi-inoculated composts had higher disease defense ability than the seeds collected from the control compost. The results indicated that the properties of the fungi shown in vitro (antagonistic and plant-growth promotion) remained in the mature compost. The seeds of the plants acquired disease defense ability, which is a remarkable observation that is useful in sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document